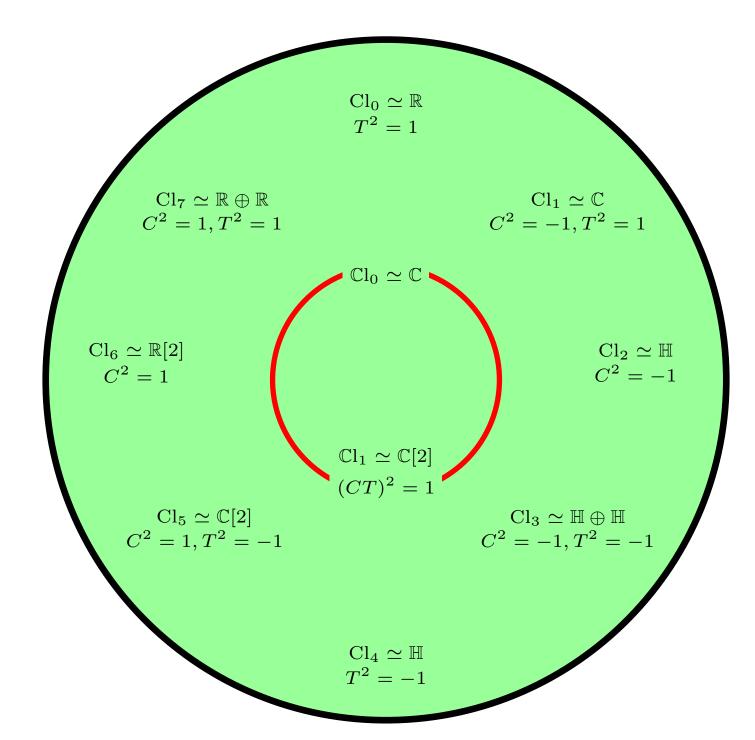
10 KINDS OF MATTER

John C. Baez



In 1996, Altland and Zirnbauer classified phases of matter into 10 kinds based on charge conjugation (C) and time reversal (T) symmetry. They can have an antiunitary C symmetry operator with $C^2 = \pm 1$ or lack this symmetry. They can have an antiunitary T operator with $C^2 = \pm 1$ or lack this. This gives $3 \times 3 = 9$ kinds. They can also lack C and T symmetry but still have a unitary operator corresponding to CT; by adjusting the phase we may assume $(CT)^2 = 1$.

Kitaev, Moore and Freed showed these 10 kinds of matter correspond to the 10 division superalgebras. There are 3 (associative) division algebras: the real numbers \mathbb{R} , complex numbers \mathbb{C} , and quaternions \mathbb{H} . A 'division superalgebra' is a \mathbb{Z}_2 -graded generalization, with a bosonic and fermionic part. 8 of these have the same categories of graded representations as the real Clifford algebras called Cl_0, \ldots, Cl_7 in the chart. The other 2 have the same categories of graded representations as the complex Clifford algebras $\mathbb{C}l_0$ and $\mathbb{C}l_1$.

The chart shows how the 10 kinds of matter correspond to the 10 division superalgebras. For example, consider matter with only T symmetry obeying $T^2 = -1$. Since T is antiunitary we have iT = -Ti. Thus i, T and iT are 3 anticommuting square roots of one, giving a representation of the quaternions \mathbb{H} . The category of representations of \mathbb{H}_1 is equivalent to the category of representations of $\mathbb{C}l_4 = \mathbb{H}[2]$, meaning 2×2 matrices with entries in \mathbb{H} . So, we write $\mathbb{C}l_4 \simeq \mathbb{H}$. An algebra can sometimes be made into a division superalgebra in more than one way. For example, $\mathbb{C}l_4 \simeq \mathbb{H}$ where $i, j, k \in \mathbb{H}$ are even, while $\mathbb{C}l_2 \simeq \mathbb{H}$ where $i, j \in \mathbb{H}$ are odd.

When we combine two physical systems we tensor their Hilbert spaces, and tensor the algebras these Hilbert spaces are representations of. In fact:

$$\operatorname{Cl}_i \otimes_{\mathbb{R}} \operatorname{Cl}_{i'} \simeq \operatorname{Cl}_{i+i' \bmod 8} \qquad \qquad \operatorname{Cl}_j \otimes_{\mathbb{C}} \operatorname{Cl}_{j'} \simeq \operatorname{Cl}_{j+j' \bmod 2} \qquad \qquad \operatorname{Cl}_i \otimes_{\mathbb{R}} \operatorname{Cl}_j \simeq \operatorname{Cl}_{i+j \bmod 2}$$

where \simeq means they have equivalent categories of graded representations. This gives the 10-element set $\mathbb{Z}_8 \cup \mathbb{Z}_2$ an associative product and multiplicative identity, but not inverses — so we say it is a 'monoid' but not a group.

We have proved that for any field k, the associative division superalgebras over k form a monoid, the 'super Brauer monoid' of k. When $k = \mathbb{R}$ this gives the monoid $\mathbb{Z}_8 \cup \mathbb{Z}_2$, and the rules for combining the 10 kinds of matter.