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Abstract. Underlying the Riemann Hypothesis there is a question whose

full answer still eludes us: what do the zeros of the Riemann zeta function

really mean? As a step toward answering this, André Weil proposed a series
of conjectures that include a simplified version of the Riemann Hypothesis

in which the meaning of the zeros becomes somewhat easier to understand.

Grothendieck and others worked for decades to prove Weil’s conjectures, in-
venting a large chunk of modern algebraic geometry in the process. This quest,

still in part unfulfilled, led Grothendieck to dream of “motives”: mysterious

building blocks that could explain the zeros (and poles) of Weil’s analogue of
the Riemann zeta function. This exposition by a complete amateur tries to

sketch some of these ideas in ways that other amateurs can enjoy.

1. Introduction

Grothendieck’s “motives” are one of his most mysterious and tantalizing ideas.
Indeed, he felt this way himself. In Récoltes et Semaille he wrote:

Among all the mathematical discoveries which I’ve been privileged
to make, the concept of the motive still impresses me as the most
fascinating, the most charged with mystery—indeed at the very
heart of the profound identity of geometry and arithmetic.

One reason for this mystique is that motives arose in Grothendieck’s long quest
to prove the Weil Conjectures. The most difficult of these was an analogue of the
Riemann Hypothesis. By dint of strenuous effort, he reduced this problem to some
conjectures about motives, called the “Standard Conjectures”. But these remain
unproved even to this day! His student Deligne finished off the Weil Conjectures by
a different method. Thus, the theory of motives remains obscure in many respects.

Nonetheless, motives are important. Quantum mechanics revealed that any
physical system is in a superposition of “energy eigenstates”, each vibrating at
its own frequency. Similarly, Grothendieck discovered that you can take polyno-
mial equations with coefficients in the field with pn elements, where p is some prime
number, and break apart their set of solutions into pieces that are not sets. These
pieces are called “motives”: they’re more like vector spaces than sets. Each piece
has something resembling a number of points—but in fact, this number is essentially
the trace of some operator to the nth power. This number can grow exponentially
but also oscillate as a function of n. So it doesn’t need to be positive! When you
add up these numbers, you get the number of solutions of your equations.

My goal here is not to explain this in detail: I merely want to get beginners
interested in motives. Mathematicians have a curious turn of phrase where they
speak of “motivating” a concept when they really mean motivating someone to
study that concept. In this language, I am trying to motivate motives.
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Since this is an explanation by an amateur for amateurs, experts should avert
their eyes. I will ruthlessly suppress details that are not strictly necessary, while
trying to not fall into outright error. All references—mainly suggestions for further
study—are in the last section.

2. The Riemann Hypothesis

The Riemann zeta function is given by a sum that converges for Re(z) > 1:

ζ(z) =
1

1z
+

1

2z
+

1

3z
+ · · ·

but we can analytically continue it to the whole complex plane except for a pole
at z = 1. It is zero at negative even integers, called “trivial” zeros. It also has
other zeros, called “nontrivial” zeros—and the Riemann Hypothesis says all these
lie on the line Re(z) = 1

2 . However, this bare statement sheds little light on why
the Riemann Hypothesis is interesting.

It is often claimed that there is no useful formula for the nth prime number. But
Riemann came up with something just as good: a formula for the “prime counting
function” π(n), which is the number of primes ≤ n:

Riemann showed that the prime counting function can be written as a main term
plus a sum of oscillating “corrections”, one for each nontrivial zero of the Riemann
zeta function. For example, when we include the first 13 correction terms we get a
smooth function that approximates π(n) quite well for n ≤ 20.
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When we include the first 118, we get a function that approximates π(n) fairly
well well even for n up to 230.

If primes are like “particles”—points where π(n) jumps discontinuously—then
zeros of the Riemann zeta function correspond to “waves”. This is not just poetry:
there is a mathematical connection to the Fourier transformation, which underlies
wave-particle duality in quantum mechanics.

Since the prime counting function π(n) equals this “main term”:

li(n) =

∫ n

0

dt

ln t

plus corrections coming from the nontrivial Riemann zeta zeros, knowing the loca-
tion of these zeros would give more information about the prime counting function.
Indeed, the Riemann Hypothesis:

All nontrivial Riemann zeta zeros lie on the line Re(z) = 1
2 .

is equivalent to this claim:

For some C > 0 and all n ≥ 1, |π(n)− li(n)| ≤ C
√
n lnn.

More simply put, the Riemann Hypothesis says that the wavelike corrections to
a simple approximation to the prime counting function are not very large. This
would have many implications for number theory: for example, it would imply a
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better bound on the biggest gaps between primes than is currently known. There
is thus ample reason for wanting to prove this hypothesis.

So far, numerical computations suggest that the Riemann Hypothesis is true:
for example, the first 12 trillion nontrivial zeros of the Riemann zeta function lie
on the line Re(z) = 1

2 . But this hypothesis has been stubbornly resistant to proof.
One reason is that we do not have a deep understanding of what the Riemann zeta
zeros mean—other than just providing oscillatory corrections to the prime counting
function.

3. The Weil Conjectures

The Weil Conjectures are interesting because they include a variant of the Rie-
mann Hypothesis that, while still difficult, has actually been proved. In this variant,
the count of solutions of some polynomial equations in several variables has a “main
term” and some oscillatory “correction terms”. One difference is that there are only
finitely many correction terms. Another is that we know more about the meaning
of the terms: they come from things called “motives”.

Let’s look at an example: the polynomial equation

y2 + y = x3 + x.

To get a finite number of solutions, we let the variables x and y take values in a
finite field. All we need to know about finite fields is that there is one called Fq

of cardinality q = pn for each prime p and each integer n = 1, 2, 3, . . .. Let’s take
p = 2 and count the solutions of the above equation with x, y ∈ Fq.

n q = 2n number of solutions
1 2 4
2 4 4
3 8 4
4 16 24
5 32 24
6 64 64
7 128 144
8 256 224
9 512 544
10 1024 1024
11 2048 1984
12 4096 4224

Since y2 + y = x3 + x is one equation with two unknowns, we might naively
guess that in the field with pn elements it has pn solutions. As you can see from the
table, this is pretty close! This approximation is the “main term”. Let’s subtract
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it off from the true number of solutions and get the “correction term”:

n correction term
1 2
2 0
3 −4
4 8
5 −8
6 0
7 16
8 −32
9 32
10 0

We can immediately notice some interesting things about this correction term.
First, its magnitude grows in a roughly exponential way while it oscillates between
being positive and negative. Second, when it’s not zero it’s a power of two. Third,
it starts out nonzero. All these patterns are real—and they suggest a correction
term proportional to a cosine times an exponential, or in other words, proportional
to

αn + αn

for some complex number α. With some experimentation we can guess α = −1+ i.
With this choice of α, here is what we get:

n αn αn + αn correction term
1 −1 + i −2 2
2 −2i 0 0
3 2 + 2i 4 −4
4 −4 −8 8
5 4− 4i 8 −8
6 8i 0 0
7 −8− 8i −16 16
8 16 32 −32
9 −16− 16i −32 32

10 −32i 0 0

So, it seems that the number of solutions of y2 + y = x3 + x in the field with 2n

element is exactly

2n − αn − αn

where α = −1 + i. Indeed this is true!
What is special about the equation y2 + y = x3 + x? Crucially, it gives an

example of an “elliptic curve”. The precise definition of an elliptic curve is a bit
technical, but the rough idea is that a polynomial equation with integer coefficients
in two variables gives an elliptic curve if its space of complex solutions is a torus
with one point removed. We then say the elliptic curve “over C” is the torus. In
other words, it’s the set of complex solutions with an extra point included.

Elliptic curves are not hard to find. For example, most cubic equations in two
variables give elliptic curves, such as

y2 = x3 + ax+ b
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for any a, b ∈ Z. In 1933, Helmut Hasse proved a theorem that vastly generalizes
the result we have empirically observed:

Theorem 1 (Hasse’s Theorem). Given a polynomial equation with integer co-
efficients in two variables that gives an elliptic curve, for any prime power q = pn,
the number of solutions in Fq of this equation is

pn − αn − αn

where α ∈ C has |α| = √
p.

In this situation we say the elliptic curve “over Fq” is the set of solutions of the
polynomial equation in Fq together with one extra point. So, the number of points
of the elliptic curve over Fq is

pn − αn − αn + 1.

Now comes something amazing. The four terms in the above formula correspond,
in some subtle and mysterious way, to four pieces of the elliptic curve over C, which
is a torus:

These four pieces are the point, the two circles with that point removed, and the
whole torus with the two circles and point removed. The pieces of dimension k
correspond to terms in the above formula that grow like pnk/2 = qk/2.

In a rough, handwaving way it may seem plausible that the piece of dimension
2 contributes q points to the elliptic curve. After all, in the complex version of
the picture, the torus minus the point and two circles can be identified with C.
Perhaps by analogy when we work over the field Fq the elliptic curve will have a
similar piece that is a copy of Fq, containing q points. It may also seem believable
that the elliptic curve over Fq should have a piece of dimension 0 containing one
point: namely, the extra point we deliberately added on.

The mystery is how the curve over Fq could have two pieces corresponding to the
oscillating correction terms −αn − αn in the count of points. After all, these two
terms are complex, and while they sum to an integer, this integer can be negative.
So, we cannot think of these terms as literally counting points in some subsets of
the elliptic curve over Fq.

In short, the individual terms in the formula that counts points of an elliptic curve
over Fq do not simply count points in subsets of this curve. Grothendieck’s idea
was that they correspond to subtler pieces of the curve, called motives. Bizarrely,
these pieces can have a negative number of points.

What are these things called motives? What could they possibly be? Since they
are supposed to explain oscillating terms in the count of points, we might hope
they are connected to vector spaces—somewhat like how quantum mechanics uses
vector spaces to describe oscillating states of physical systems. This turns out to
be true!

But motives are also connected to topology—algebraic topology, to be precise.
And this is no coincidence: algebraic topology lets us turn topological spaces into
vector spaces. To any topological space X we can associate a sequence of vector
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spaces Hk(X) called its “cohomology groups”, which keep track of k-dimensional
aspects of its topology.

Consider in particular an elliptic curve over C: that is, a torus. Its 0th coho-
mology group is a 1-dimensional vector space, and we can get a basis vector for
this space from any point in the torus. Its 1st cohomology group is a 2-dimensional
vector space, and we can get basis vectors for this from the two circles shown
above—though many other choices of circles would work equally well. Finally, its
2nd cohomology group is a 1-dimensional vector space, and a basis for this is given
by a 2-dimensional surface, namely the torus itself.

Of course, the mysterious part is that the topology of the elliptic curve over C is
relevant to its count of points over a finite field! This is very hard to understand.
But this turned out to be the key to generalizing Hasse’s theorem.

First, with a lot of work from roughly 1940 to 1948, André Weil generalized
Hasse’s result to algebraic curves of arbitrary genus g: that is, polynomial equations
in two variables whose space of complex solutions, plus one extra point, look like a
smooth surface with g handles. Here is an example with g = 2:

The 0th and 2nd cohomology groups of such a curve are still 1-dimensional,
but the 1st cohomology group has dimension 2g. So, when we count points of an
algebraic curve defined over a finite field, we expect more terms in the formula.
Weil proved that this is true:

Theorem 2 (Weil’s Theorem). Given a polynomial equation with integer coef-
ficients in two variables that gives an algebraic curve of genus g, for any prime
power q = pn the number of points of this curve over Fq is

pn − αn
1 − · · · − αn

2g + 1

where all the numbers αi ∈ C have |αi| =
√
p.

The simplest example is the curve of genus zero. This is called the “projective
line” P1, and over the complex numbers it is usually called the “Riemann sphere”,
since it is a sphere consisting of a copy of C together with a point at infinity:

Similarly over Fq we can chop the projective line into two subsets—a copy of Fq

and a point at infinity—so it has

q + 1

points. Thus, in this particular case the two “motives” making up the projective
line can be loosely thought of as as actual subsets. But this is deceptive: there is
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nothing special about the point at infinity here; any other point would do just as
well.

This trivial example hints at a higher-dimensional generalization of Weil’s theo-
rem. Besides the projective line, there is also a “projective plane”, which consists
of a plane together with a projective line at infinity. Over the real numbers the
plane is R2, but over the complex numbers it is C2, while the projective line is
C + 1: that is, the disjoint union of C and a point. So, we can write the complex
projective plane CP2 as

CP2 = C2 + C+ 1.

Similarly we can chop the projective plane over the finite field Fq, into three pieces:
the plane F2

q, which has q2 points, and the projective line Fq + 1:

FqP2 = F2
q + Fq + 1.

Thus, FqP2 has

q2 + q + 1

points.
Higher-dimensional projective spaces follow the same pattern. But elliptic curves

illustrate the subtleties we must confront in generalizing Weil’s result to higher
dimensions. As we’ve seen, elliptic curves have both even- and odd-dimensional
cohomology over C. For this reason, over Fq their number of points is not merely
polynomial in q, but also has terms with magnitude proportional to powers of

√
q.

To generalize his result for curves to higher dimensions, Weil needed to con-
sider algebraic varieties. Given a collection of polynomial equations with integer
coefficients in n variables, we can study their solutions in—or as the experts say,
“over”—any field F. The solutions form a subset of Fn, which is called an “affine
algebraic variety” over F. However, it is often useful to include additional points
at infinity, as we have already seen in some examples. If we do this correctly, we
get a “projective algebraic variety”.

If we work over the field F = C, and our projective algebraic variety X is smooth
in a suitable sense, then it is a 2d-dimensional manifold, and it can have nontrivial
cohomology groups Hk(X) only for 0 ≤ k ≤ 2d. But an algebraic variety over a
finite field Fq has a finite set of points, which we can count.

This line of thought led Weil to conjecture a grand generalization of his previous
result for curves. He made this conjecture in 1949. Building on decades of work by
Grothendieck and others, the proof was finally completed by Deligne in 1974.

Theorem 3 (Riemann Hypothesis for Varieties over Finite Fields). Given
a collection of polynomial equations with integer coefficients defining a smooth pro-
jective variety, for any prime power q = pn, the number of points of this variety
over Fq is

2d∑
k=0

βk∑
i=1

(−1)kαn
ik

where |αik| = pk/2 and βk is the dimension of the kth cohomology group of the
corresponding projective variety over C.

This theorem is often phrased in terms of a “zeta function” associated to the
variety X, a relative of the function Riemann was interested in. This zeta function
is essentially a trick for keeping track of the count of points on X. Theorem 3
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can be restated as saying that this zeta function has zeros and poles on the lines
Re(z) = k

2 : zeros when k is odd and poles when k is even.
However, the connection to motives is most easily visible if we inquire about the

terms in the above sum. Grothendieck’s dream was that we can somehow break X
into pieces of dimension k = 0, 1, . . . , 2d, with the k-dimensional pieces contributing
all the terms of the form (−1)k αn

ik to the number of points. As we’ve seen, these
pieces cannot in general be subsets of X. They must be something else: motives.

4. Motives

But what is a motive? Here we need to turn up the heat and assume some
familiarity with category theory. For any prime power q there is a category Var
of smooth projective varieties over Fq and the usual maps between these. Starting
from Var we can construct a category Mot, called the category of “pure motives”,
and a functor

h : Var → Motop,

where the use of the opposite category is purely traditional. This category Mot,
and also its opposite, have many features resembling the category of vector spaces
and linear maps:

• They are “linear categories”: the hom-sets are vector spaces, and composi-
tion is bilinear.

• They are “Karoubian” or “Cauchy complete”: they have direct sums, and
any π : X → X with π2 = π is projection onto Y for some direct sum
decomposition X ∼= Y ⊕ Z.

• They are “symmetric monoidal”: they have a well-behaved tensor product
⊗, coming from the cartesian product of smooth projective varieties.

Thus, we should think of the functor h as taking us from the world of smooth
projective varieties to the world of linear algebra.

To get a sense for how Cauchy completeness works, note that we can map all of
P1 to a single point p ∈ P1, defining

π : P1 → P1

by π(x) = p for all x ∈ P1. This map clearly has π2 = π, so the morphism
h(π) : h(P1) → h(P1) has h(π)2 = h(π). By Cauchy completeness, h(π) is the
projection onto some summand in a direct sum decomposition of h(P1). With a bit
of category theory we can check that this summand must be isomorphic to h(1),
where 1 ∈ Var is the 1-point variety. So,

h(P1) = h(1)⊕ L

where L is some other motive.
This other motive L is called the “Lefschetz motive”. It is not h of any smooth

projective variety! We can loosely visualize it as the projective line with a point
removed—and thus, an ordinary line. Earlier, we chopped the projective line into
a point and an ordinary line. The latter was not a projective variety—but the
decomposition h(P1) = h(1)⊕ L is valid in the category of motives.

With more work, we can show

h(Pn) ∼= h(1) ⊕ L ⊕ L⊗2 ⊕ · · · ⊕ L⊗n
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and this corresponds to the formula for the number of points of Pn over Fq:

1 + q + · · · + qn.

But curves and other varieties typically decompose into motives that are not just
tensor powers of the Lefschetz motive L, because their number of points over Fq is
not just a polynomial in q.

Grothendieck showed the Riemann Hypothesis for finite fields would follow from
the so-called “Standard Conjectures”. Among other things, these conjectures would
imply:

• Every variety X has h(X) ∼= X0 ⊕ · · · ⊕Xn where the motive Xk has di-
mension k, or technically speaking “weight” k, meaning that it contributes
terms proportional to αn with |α| = pk/2 to the count of points of X over
Fpn .

• The category Mot is “abelian”: it has well-behaved kernels, cokernels, sub-
objects and quotient objects.

• The category Mot is “semisimple”: every motive is a finite direct sum of so-
called “simple” motives that have only two subobjects, 0 and that motive
itself. Thus, each motive Xk above can be further decomposed into a direct
sum of simple motives.

If the Standard Conjectures are true, we can take any d-dimensional smooth
projective variety X over the algebraic completion of Fp and compute its number
of points over each field Fpn as follows. First, we break the motive h(X) into a
direct sum of motives Xk as above. Each of these comes equipped with a special
morphism

Fk : Xk → Xk

called the “Frobenius”. The number of points of X over Fpn can then be expressed
in terms of the nth power of the Frobenius as follows:

2d∑
k=0

(−1)ntr(Fn
k )

where the trace is defined by carrying ideas from linear algebra to the category of
pure motives. This explains the exponentially growing yet also perhaps oscillating
terms in the Riemann Hypothesis for varieties over finite fields (see Theorem 3).

Another consequence of the Standard Conjectures is that h is the “universal
Weil cohomology theory”: that is, the maximally informative cohomology theory
for smooth projective varieties obeying a certain list of axioms.

Alas, Grothendieck was unable to prove the Standard Conjectures. It is still not
known if Mot has the desirable properties just listed. In 1974 Deligne proved the
Riemann Hypothesis for varieties over finite fields in a way that sidestepped these
questions.

Thus, motives remain deeply mysterious—yet the idea of motives, or what
Grothendieck called the “yoga” of motives, has been very powerful in the hands of
skilled mathematicians, from Deligne to Voevodsky and others. There are also bold
visions that go even further. For example, in 1995 Yuri Manin outlined a dream
of proving the actual Riemann Hypothesis by generalizing motives over fields to
motives over a poorly-understood entity called the “field with one element”, which
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is not really a field. More recently Alain Connes has been trying to prove the
Riemann Hypothesis using these ideas, combined with ideas taken from quantum
physics.

So, motives continue to tantalize and inspire!

5. Further reading

Here we give references to works mentioned above and also some suggestions
for further reading—mainly on pure motives, since mixed motives, motivic Galois
groups and motivic cohomology go beyond the limited scope of this article.

5.1. Introduction. The Grothendieck quote about motives is from Lisker’s trans-
lation of Grothendieck’s 1500-page memoir Récoltes et Semailles, which has many
interesting discussions of motives:

• Alexander Grothendieck, Récoltes et Semailles, 1986. Available at https://
agrothendieck.github.io/divers/ReS.pdf. Partial translation into English by
Roy Lisker available at http://matematicas.unex.es/∼navarro/res/lisker1.pdf.

5.2. The Riemann Hypothesis. Riemann propounded his famous hypothesis
here:

• Bernard Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen
Grösse, Monatsberichte der Berliner Akademie, November 1859. Available
in German and English at https://www.maths.tcd.ie/pub/HistMath/People/
Riemann/Zeta/.

This is an enjoyable introduction to the Riemann Hypothesis and its connection to
the prime counting function:

• Barry Mazur and William Stein, Prime Numbers and the Riemann Hy-
pothesis, Cambridge U. Press, Cambridge, 2016.

The picture of the prime counting function was drawn for this paper by Dima
Pasechnik. The two pictures of approximations to the prime counting function are
still shots of animations that are available online:

• Dan Rockmore, Chance in the primes, https://chance.dartmouth.edu/chance
news/recent news/chance news 10.10.html.

5.3. The Weil Conjectures. James Milne has written some very useful papers
on motives and the Weil Conjectures. This is an insightful history of the latter:

• James Milne, The Riemann Hypothesis over finite fields: from Weil to the
present day, in The Legacy of Bernhard Riemann after One Hundred and
Fifty Years, vol. II, eds. Lizhen Ji, Frans Oort and Shing-Tung Yau, Inter-
national Press, Somerville, Massachusetts, 2015, pp. 487–565. Available at
https://www.jmilne.org/math/xnotes/pRH.html.

Instead of providing references to the work of Hasse, Weil, Grothendieck, Deligne
and others connected to the Weil Conjectures, I defer to this work.

The pictures of an elliptic curve, genus-2 curve and Riemann sphere were created
for this paper by Simon Burton.
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5.4. Motives. This is an excellent quick introduction to the definition of pure
motives and the Standard Conjectures:

• James Milne, Motives: Grothendieck’s dream, in Open Problems and Sur-
veys of Contemporary Mathematics, eds. Lizhen Ji, Yat-Sun Poon and
Shing-Tung Yau, International Press, Somerville, Massachusetts, 2013, pp.
325–342. Available at https://www.jmilne.org/math/xnotes/mot.html.

Milne has a real flair for saying only what absolutely needs to be said to get the main
ideas across. However, like most treatments of motives, his introduction assumes
a good understanding of algebraic geometry and cohomology theory. For more try
this excellent book, which has roughly similar prerequisites, but fills in more details
and goes further:

• Jacob P. Murre, Jan Nagel and Chris A. M. Peters, Lectures on the Theory
of Pure Motives, University Lecture Series 61, AMS, Providence, 2013.

To dig deeper, try this:

• Yves André, Une Introduction aux Motifs (Motifs Purs, Motifs Mixtes,
Périodes), Panoramas et Synthèses 17, Sociètè Math. de France, Paris,
2004.

There are various kinds of pure motives arising from various equivalence relations
on algebraic cycles. In the body of this paper I was implicitly defining them using
“homological equivalence”. If instead one defines them using a coarser equivalence
relation called “numerical equivalence”, one can prove the resulting category of
pure motives is abelian and semi-simple. This was done by Jannsen:

• Uwe Jannsen, Motives, numerical equivalence, and semi-simplicity, Invent.
Math. 107 (1992), 447–452. Available at https://eudml.org/doc/143974.

Furthermore, one of the unproven Standard Conjectures, called Conjecture D, as-
serts that homological and numerical equivalence actually agree! Thus, it is very
interesting to study pure motives defined using numerical equivalence, which can
be understood quite explicitly, at least over finite fields:

• James Milne, Motives over finite fields, Proc. Sympos. Pure Math. 55, Part
1, AMS, Providence, 1994, pp. 401–459. Available at https://www.jmilne.
org/math/articles/1994a.html.

Manin’s dream of applying motivic ideas to the actual Riemann Hypothesis is
explained here:

• Yuri Manin, Lectures on zeta functions and motives, Astérisque 228 (1995),
121–163. Available at http://www.numdam.org/item/?id=AST 1995 228
121 0.

Connes has been working with a number of collaborators to prove the Riemann
Hypothesis using ideas connected to motives. An early report is his book with
Marcolli:

• Alain Connes and Matilde Marcolli, Noncommutative Geometry, Quan-
tum Field Theory and Motives, AMS, Providence, 2007. Available at
https://alainconnes.org/wp-content/uploads/bookwebfinal-2.pdf.
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