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Riemann came up with a formula for the prime counting function:
π(n) is the number of primes ≤ n:



The prime counting function can be written as a main term plus a
sum of wave-like “corrections”, one for each nontrivial zero of the

Riemann zeta function:



So, in some very vague sense we’re seeing wave-particle duality:

If primes are “particles”, zeros of the Riemann zeta function
correspond to “waves”.



Since the prime counting function π(n) equals the “main term”

li(n) =

∫ n

0

dt

ln t

plus corrections coming from the nontrivial Riemann zeta zeros,
knowing the location of these zeros would give more information

about the prime counting function.



Indeed the Riemann Hypothesis:

All nontrivial Riemann zeta zeros lie on the line Re(z) = 1
2

is equivalent to the claim that

|π(n)− li(n)| ≤ C
√
n ln n

for some C > 0 and n ≥ 1.



To prove the Riemann Hypothesis,
it might help to know what the Riemann zeta zeros mean —
other than just providing oscillatory corrections to the prime

counting function.

The Weil Conjectures give an easier context in which to study this
kind of question. In this variant, the count of points on an

algebraic variety over a finite field has a “main term” and some
“correction terms”.

Each of these terms corresponds to a ”motive”.

Let’s look at an example.



Let’s count the number of solutions of

y2 + y = x3 + x

over the finite field with q = pn elements, called Fq. Take p = 2:

n q = pn number of solutions
1 2 4
2 4 4
3 8 4
4 16 24
5 32 24
6 64 64
7 128 144
8 256 224
9 512 544

10 1024 1024
11 2048 1984
12 4096 4224



Since y2 + y = x3 + x is one equation with two unknowns we
might naively guess that over the field with pn elements it has pn

solutions.

This is pretty close! This is the “main term”. Let’s subtract it off:

n correction term
1 2
2 0
3 −4
4 8
5 −8
6 0
7 16
8 −32
9 32

10 0



Hasse’s Theorem on Elliptic Curves (1933)

Given a cubic equation with integer coefficients in two variables
that defines an elliptic curve, the number of solutions in the field

with pn elements is

pn − αn − α n

where α ∈ C has |α| =
√
p.



The elliptic curve also has a point at infinity, so its number of
points over the field with pn elements is

pn − αn − α n + 1

where α ∈ C has |α| =
√
p.

The four terms correspond, in some profound way, to these four
pieces of the elliptic curve over C, which is a torus:

The pieces of dimension k give the terms that grow like p
k
2
n.



With a lot of work, Weil generalized Hasse’s result to
curves of arbitrary genus.

Weil’s Theorem (1940–1948)
Given a smooth algebraic curve of genus g defined over the field

with p elements, its number of points over the field with pn

elements is

pn − αn
1 − · · · − αn

2g + 1

where all the αi ∈ C have |αi | =
√
p.



The simplest example: the projective line P1. Over the field with
q = pn elements this has

q + 1

points.

It’s easy to split P1 into two parts: a copy of Fq, with q points,
and a point at infinity.

Over the complex numbers P1 looks like this:



Over the field with q elements the projective plane P2 has

q2 + q + 1

elements. It breaks up into:

I A copy of F2
q, with q2 elements.

I A copy of F1
q, with q elements.

I A copy of F0
q, with 1 element.

Higher-dimensional projective spaces follow the same pattern.



Over the complex numbers, the projective space Pd has no
cohomology in odd dimensions, and a rank-1 cohomology group in

dimensions

1, 2, 4, . . . , 2d

because it’s made of chunks called “Schubert varieties”
that are copies of

C0, C1, C2, . . . , Cd

Over the field with q elements, Pd is made of Schubert varieties
that are copies of

F0
q, F1

q, F2
q, . . . , Fd

q

so its number of points is

1 + q + q2 + · · ·+ qd



Some other interesting projective varieties — “flag varieties” —
are also made of chunks called Schubert varieties, and the same
reasoning applies to them. But most varieties are not so simple!

Elliptic curves illustrate the extra subtleties. As we’ve seen, they
have both even- and odd-dimensional cohomology over C:

And over Fq their number of points is not a polynomial in q = pn.
It’s

pn − αn − α n + 1

with |α| = p1/2.



Riemann Hypothesis for Varieties over Finite Fields
(Conjectured by Weil in 1949)

Given a d-dimensional smooth projective variety defined over the
field with p elements, its number of points over Fpn is

2d∑
k=0

βk∑
i=1

(−1)kαn
ik

where |αik | = pk/2 and βk is the kth “Betti number” of the variety
— that is, the rank of its kth cohomology group.

This conjecture is usually phrased in terms of a “zeta function”.
It claims this has zeros and poles on the lines Re(z) = k

2 :
zeros when k is odd and poles when k is even.



Remember the formula:

number of points over Fpn =
2d∑
k=0

βk∑
i=1

(−1)kαn
ik

where βk is the kth Betti number of the variety and |αik | = pk/2.

Grothendieck’s dream: we can always break the variety into
abstract chunks called motives of dimension k = 0, 1, . . . , 2d .

The k-dimensional motives contribute terms of the form (−1)k αn
ik

to the number of points.

So, each chunk contributes to the number of points in our variety.
And it can contribute a negative number of points!



Indeed, there is a category Var of smooth projective varieties and
regular maps over Fp, and a functor

h : Varop → Mot

where Mot, the category of ”pure Chow motives”, resembles
categories we know from linear algebra:

I It is a “linear category”: the hom-sets are vector spaces, and
composition is bilinear.

I It is “Cauchy complete”, or“Karoubian”: it has direct sums,
and any p : X → X with p2 = p is projection onto Y for some
direct sum decomposition X ∼= Y ⊕ Z .

I It is “symmetric monoidal”: it has a well-behaved tensor
product ⊗, coming from the cartesian product of smooth
projective varieties.



We can map all of P1 to a single point:

p : P1 → P1

and this map clearly has p2 = p.
Thus, in the category Mot we have

h(P1) = h(1)⊕ L

where 1 corresponds to the point and L is some motive called the
Lefschetz motive.



Similarly, we have

h(Pn) ∼= h(1) ⊕ L ⊕ L⊗2 ⊕ · · · ⊕ L⊗n

and this corresponds to the formula we saw for the number of
points of Pn over Fq:

1 + q + · · · + qn

But curves and other varieties typically decompose into motives
that are not just tensor powers of the Lefshetz motive L.



We can construct the category Mot of pure Chow motives by hand
starting from Var.

We can also characterize it via a univeral property:
every “Weil cohomology theory”

H : Varop → Vect

factors uniquely through

h : Varop → Mot

Weil cohomology theories were introduced by Grothendieck and
others to help prove the Weil conjectures.



Grothendieck showed the Riemann Hypothesis for finite fields
would follow from the so-called ”Standard Conjectures”.

Among other things, these conjectures would imply:

I Every variety X has h(X ) ∼= X0 ⊕ · · · ⊕ Xn where the motive
Xk has “weight” k , meaning it contributes terms of the form
αn with |α| = pk/2 to the count of points of X over Fpn .

I The category Mot is “abelian”: it has well-behaved kernels,
cokernels, subobjects and quotient objects.

I The category Mot is “semisimple”: every motive is a finite
direct sum of motives that have only two subobjects, 0 and
that motive itself.



Alas, Grothendieck was unable to prove the Standard Conjectures.

They remain unproved to this day!

It’s still not known if Mot has the desirable properties I just listed.

Deligne proved the Riemann Hypothesis for varieties over finite
fields in 1974 in a way that sidestepped these questions.

Thus, motives remain deeply mysterious.



In 1995, Manin outlined a dream of proving the actual
Riemann Hypothesis by generalizing motives to the mystical

“field with one element”:

I Yuri Manin, Lectures on zeta functions and motives.

Connes has been trying to prove the Riemann Hypothesis using
these ideas. An early report, also from 1995, is his book:

I Alain Connes and Matilde Marcolli, Noncommutative
Geometry, Quantum Field Theory and Motives.

http://www.numdam.org/item/?id=AST_1995__228__121_0
https://alainconnes.org/wp-content/uploads/bookwebfinal-2.pdf
https://alainconnes.org/wp-content/uploads/bookwebfinal-2.pdf


Pure motives are just a special case of “mixed motives”,
which aim to handle varieties that are not smooth, or not

projective.

These are also mysterious —
but Voevodsky essentially managed to define the derived category

of mixed motives without defining mixed motives themselves!
In 1996 he used these ideas to solve the Milnor conjecture,

triggering a burst of new work.

So, motives continue to tantalize and inspire!


