Space and State,
Spacetime and Process

John C. Baez
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Right now physicists are trying to rec-
oncile general relativity (our best theory
of spacetime) and quantum theory (our
best theory of physical processes).

Luckily, there’s an analogy to guide us:

GENERAL RELATIVITY | QUANTUM THEORY
(n — 1)-dimensional Hilbert
manifold space
(space) (states)
cobordism between operator between
(n — 1)-dimensional Hilbert
manifolds spaces
(spacetime) (process)
composition of cobordisms | composition of operators
identity cobordism identity operator

In both cases there is a symmetric monoidal
category with duals at work:

e nCob: m-dimensional cobordisms be-
tween (compact framed) (n—1)-manifolds.

e Hilb:  linear operators between
(finite-dimensional) Hilbert spaces.



Morphisms

A cobordism

A morphism in Hilb is a linear operator

T: H — H' from the Hilbert space H
to the Hilbert space H'.



Composition

Composition of cobordisms

Composition in Hilb is defined by

(ST)¢ = S(TY)
foral T: H - H'. S: H — H" and
Y e H.



Identity Morphisms
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An identity cobordism

Identity morphisms in Hilb are given by

Ly =9
for all H € Hilb and ¢ € H.



Tensor Product
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Tensor product of cobordisms

The tensor product of Hilbert spaces is
their algebraic tensor product completed
to become a Hilbert space; the tensor
product of operators 7: H — K and
T': H — K' is given by:

(ToThWey)=TyT.
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The Braiding
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Braiding in nCob

The braiding in Hilb is given by

By gi(v @) =4’ @
for all H,H € Hilb, v € H and
' e H'.

In both nCob and Hilb the braiding sat-
isfies

B:v,yBy,x =1

so they are symmetric monoidal categories.



Duality for Objects

Both nCob and Hilb are compact sym-
metric monoidal categories: for every ob-
ject x there is a dual x™ with counit
er: 2°Qr — landunitiz: 1 — 22
satistying the zig-zag identities.

Duals for objects in nCob

In nCob, S* has the opposite orienta-
tion from S. In Hilb, H™* is the space of
continuous linear functionals on H.
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Duals for morphisms

Both nCob and Hilb are x-categories:
they are equipped with a contravariant
endofunctor * acting as the identity on
objects and with %2 = 1.
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Duals for morphisms in nCob

Duals for morphisms in Hilb: given
T: H— H' define T*: H — H via

(I, ) = (¢, TY)
for allv) € H and ¢ € H'.

A morphism f in a x*-category is
unitary if it has f* as its inverse.
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A symmetric monoidal category has
duals if it is compact and also a *-category,
and all structural isomorphisms are
unitary:

e the associators agz . 2,
e the left and right unit laws ¢, and r,

e the braidings By .

A symmetric monoidal functor F': C' —
D preserves duals if it is also a
x-functor:

F(z*) = F(x2)", reC
for which all structural isomorphisms are
unitary:

e the unit preservation isomorphism
Fi: 10— F(1p)

e the tensor product preservation isomor-
phisms
(F2>:1:,y3 F(z)® Fy) = Flz ®y).
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A unitary TQFT is a symmetric
monoidal functor preserving duals,

/Z : nCob — Hilb.

TQFTs describe background-free quan-
tum field theories with no local degrees
of freedom: all their interesting aspects
are ‘global’.

TQFTs exploit the analogy between space
and state, spacetime and process in a
very clear way. More ‘physical’ theo-
ries also do this... but in more myste-
rious ways! Understanding TQFT's with
the help of n-categories is a ‘warmup ex-
ercise’ for understanding more physical
theories this way.
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In quantum field theory, we use Feynman
diagrams to calculate inside the category
Rep(G) of unitary representations of G,
the symmetry group of our theory:

e idges are labelled with unitary repre-
sentations of GG: ‘particles’

e Vertices are labelled with intertwining
operators: ‘interactions’

Typically G includes symmetries of space-
time (e.g. R*), and its unitary represen-
tations are described as spaces of solu-
tions of linear PDE on spacetime. Then
1t can be useful to work with Feynman
diagrams living tn spacetime.

12



In string theory, we replace Feynman di-
agrams with 2-dimensional ‘string world-
sheets’:

Again we may view these ‘abstractly’ as
tools for computing in a theory — a con-
formal field theory— or as mapped into
spacetime.
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In spin foam models of quantum grav-
ity we replace Feynman diagrams with
2-dimensional ‘spin foams’:

Both string theory and spin foam models
hint at some sort of ‘categorification’ of
Feynman diagrams! However, categori-
fication has been developed much more
extensively for topological quantum field
theories.
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The Tangle Hypothesis: The free k-
tuply monoidal n-category with duals on
one generator i1s n'lTang;.: top-dimensional
morphisms are n-dimensional framed tan-
gles in n + k dimensions.
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The Stabilization Hypothesis:
S: nCatp — nCatkH

is an equivalence of (n+ k+2)-categories
itk >n+2.

Combining these hypotheses, we obtain:

The Cobordism Hypothesis: The
free stable n-category with duals on one
generator 18 nCOB: n-morphisms here
are n-dimensional framed cobordisms be-
tween framed manifolds with corners.

An unitary extended TQFT should
be a stable n-functor preserving duals,

Z: nCOB — nHilb

for some stable n-category with duals ‘nHilb’.
Z should therefore be determined by Z(e),
where e is the positively oriented point.
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