What n-Categories Should Be Like

John C. Baez

many figures by Aaron Lauda

Many theorems about categories should generalize to *n*-categories. Let's focus on how *n*-categories are *different*. I'll try to state results in a formalism-independent way, but sometimes I'll phrase things in 'globular' terms:

There should be an (n+1)-category $n\mathbf{Cat}$ whose:

- objects are *n*-categories,
- 1-morphisms are functors between these,
- 2-morphisms are natural transformations between these,
- 3-morphisms are modifications between these, ...

etc!

3 Ways to Make *n*-Categories Nicer

- 1. An n-groupoid is an n-category where all morphisms are equivalences (have weak inverses).
- 2. A k-tuply monoidal n-category is an (n + k)-category that is trivial below dimension k.
- 3. A **strict** *n*-category is one where all laws hold 'on the nose', as equations. (Formalism-dependent? Let's consider globular strict skeletal *n*-categories.)

Let's consider the effect of these assumptions separately and in combination!

There's more to say about the first two...

There should be an (n+1)-category \mathbf{nTyp} whose:

- objects are **homotopy** *n***-types**: nice spaces (say CW complexes) with vanishing homotopy groups above the *n*th,
- 1-morphisms are continuous maps,
- 2-morphisms are homotopies between continuous maps,
- etc...
- (n+1)-morphisms are homotopy classes of homotopies between homotopies between ... continuous maps.

The Homotopy Hypothesis: If nGpd is the full sub-(n + 1)-category of nCat whose objects are n-groupoids, there is an equivalence

$$\Pi_n : n \text{Typ} \to n \text{Gpd.}$$

k-tuply Monoidal n-Categories

A k-tuply monoidal n-category has k ways to multiply objects, satisfying interchange laws up to equivalence. Increasing k increases the 'abelianness', by the Eckmann–Hilton argument. For example, when k=2:

gives us a braiding:

(n+k)Cat should have a full (n+k+1)subcategory $n\mathbf{Cat}_k$ whose objects are k-tuply monoidal n-categories.

THE PERIODIC TABLE

k-tuply monoidal n-categories

	n = 0	n = 1	n = 2
k = 0	sets	categories	2-categories
k = 1	monoids	monoidal	monoidal
		categories	2-categories
k = 2	commutative	braided	braided
	${f monoids}$	monoidal	monoidal
		categories	2-categories
k = 3	67	symmetric	sylleptic
		monoidal	monoidal
		categories	2-categories
k = 4	67	67	symmetric
			monoidal
			2-categories
k = 5	67	67	67
k = 6	67	69	67

Playing Hopscotch on the Periodic Table

There are many ways to hop around the periodic table. For example, every (n-1)-category is an n-category with only identity morphisms, giving **discrete** categorification:

$$(n-1)\operatorname{Cat}_k \xrightarrow{\operatorname{Disc}} n\operatorname{Cat}_k$$

Conversely, we can **decategorify** by discarding n-morphisms and taking isomorphism classes of (n-1)-morphisms:

$$(n-1)\operatorname{Cat}_k \stackrel{\operatorname{Decat}}{\leftarrow} n\operatorname{Cat}_k$$

These aren't adjoints, but

$$\operatorname{Decat}(\operatorname{Disc}(C)) \simeq C$$

For $C \in n$ Gpd $\simeq n$ Typ, forming Decat(C) is called 'killing the nth homotopy group' — filling n-dimensional holes.

Another process is **looping**:

defined for k > 0 by $\Omega(C) = \text{End}(1)$. This should have a left adjoint called **delooping**:

$$n\operatorname{Cat}_{k}$$
 $(n-1)\operatorname{Cat}_{k+1}$
 $+$ k)-groupoid trivial be

An (n + k)-groupoid trivial below dimension k is a k-tuply groupal n-groupoid. The corresponding homotopy n-type should be a k-fold loop space: a space of loops in the space of loops in ... some pointed space. Ω and B are then familiar in homotopy theory.

Another process is **forgetting monoidal structure**:

which should have a left adjoint, **stabilization**:

$$n\operatorname{Cat}_{k} \\ s | \\ n\operatorname{Cat}_{k+1}$$

The Stabilization Hypothesis:

$$S \colon n\mathrm{Cat}_k \to n\mathrm{Cat}_{k+1}$$

is an equivalence of (n+k+2)-categories if $k \ge n+2$.

A **stable** *n*-category is a *k*-tuply monoidal *n*-category for any $k \ge n + 2$.

A Weakly Commuting Cube of (n+1)-Functors

A Weakly Commuting Cube of (n+1)-Functors, Revisited

A Weakly Commuting Cube of ω -Functors

Algebraic Structures and the Free Such Structures on One Generator

sets	1
monoids	\mathbb{N}
groups	$\mathbb Z$
k-tuply monoidal	$n\mathrm{Braid}_k$
n-categories	
k-tuply monoidal	Braid_k
$\omega ext{-categories}$	
stable ω -categories	$ FinSet_0 $
k-tuply monoidal	$n\mathrm{Tang}_k$
<i>n</i> -categories with duals	
${f stable} n{ ext{-categories}}$	nCob
with duals	
k-tuply groupal	$\Pi_{n+k}(S^k)$
n-groupoids	
k-tuply groupal	S^k
$\omega ext{-}\mathbf{groupoids}$	
stable ω -groupoids	$\Omega^{\infty}S^{\infty}$
strict k-tuply groupal	$K(\mathbb{Z},k)$
$\omega ext{-}\mathbf{groupoids}$	