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Many theorems about categories should
generalize to n-categories. Let’s focus on
how n-categories are different. I'll try to
state results in a formalism-independent
way, but sometimes I'll phrase things in
‘elobular’ terms:
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There should be an (n+1)-category nCat
whose:

e objects are n-categories,

e 1-morphisms are functors
between these,

e 2-morphisms are natural
transformations between these,

e 3-morphisms are modifications
between these, ...

etc!



3 Ways to Make n-Categories
Nicer

1. An n-groupoid is an n-category where
all morphisms are equivalences (have
weak inverses).

2. A k-tuply monoidal n-category
is an (n + k)-category that is trivial
below dimension k.

3. A strict n-category is one where all
laws hold ‘on the nose’, as equations.
(Formalism-dependent? Let’s consider
globular strict skeletal n-categories.)

Let’s consider the effect of these assump-
tions separately and in combination!

There’s more to say about the first two...



There should be an (n+1)-category nTyp
whose:

e objects are homotopy n-types: nice
spaces (say CW complexes) with van-
ishing homotopy groups above the nth,

e I-morphisms are continuous maps,

e 2-morphisms are homotopies between
continuous maps,

® clc...

e (n+1)-morphisms are homotopy classes
of homotopies between homotopies
between ... continuous maps.

The Homotopy Hypothesis: If nGpd
is the full sub-(n + 1)-category of nCat
whose objects are n-groupoids, there is
an equivalence

I[1,,: nTyp — nGpd.



k-tuply Monoidal n-Categories

A k-tuply monoidal n-category has k ways
to multiply objects, satistying interchange
laws up to equivalence. Increasing k
increases the ‘abelianness’, by the Eckmann—
Hilton argument. For example, when

k= 2:

(n+ k)Cat should have a full (n+k+1)-
subcategory mCatg whose objects are
k-tuply monoidal n-categories.



THE PERIODIC TABLE

k-tuply monoidal n-categories

n=>0 n=1 n =2
k=0 sets categories | 2-categories
k=1 monoids monoidal | monoidal
categories | 2-categories
k = 2 | commutative | braided braided
monoids monoidal | monoidal
categories | 2-categories
k=3 ¢ symmetric | sylleptic
monoidal | monoidal
categories | 2-categories
k=4 ¢ ¢ symmetric
monoidal
2-categories
k, — 5 ¢ (% ¢
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Playing Hopscotch
on the Periodic Table

There are many ways to hop around the
periodic table. For example, every (n —
1)-category is an m-category with only
identity morphisms, giving discrete
categorification:

(n — 1)Catk Disc nCatk

Conversely, we can decategorify by dis-
carding n-morphisms and taking isomor-
phism classes of (n — 1)-morphisms:

(n — 1)Caty, 2eat nCaty,
These aren’t adjoints, but
Decat(Disc(C')) ~ C

For C' € nGpd >~ nTyp, forming Decat(C)
is called ‘killing the nth homotopy group’
— filling n-dimensional holes.



Another process is looping:

nCaty.

.

(n —1)Catyq

defined for & > 0 by Q(C) = End(1).
This should have a left adjoint called
delooping:

nCaty,
2

(n —1)Catyq

An (n + k)-groupoid trivial below di-
mension k£ i1s a k-tuply groupal n-
groupoid. The corresponding homo-
topy n-type should be a k-fold loop
space: a space of loops in the space of
loops in ... some pointed space. {2 and
B are then familiar in homotopy theory.



Another process is forgetting monoidal

structure:
nCaty,
I3
nCaty,
which should have a left adjoint,
stabilization:
nCaty.
S|
nCaty,

The Stabilization Hypothesis:
S nCaty, — nCatyq

is an equivalence of (n+ k+2)-categories
itk >n+2.

A stable n-category is a k-tuply monoidal
n-category for any k > n + 2.



A Weakly Commuting Cube
of (n+1)-Functors
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A Weakly Commuting Cube
of (n+1)-Functors, Revisited
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A Weakly Commuting Cube
of w—Functors
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Algebraic Structures and the
Free Such Structures on One

(GGenerator
sets 1
monoids N
groups 7

k-tuply monoidal nBraidy
n-categories

k-tuply monoidal Braidy
w-categories
stable w-categories |FinSety|
k-tuply monoidal n'Tang;.
n-categories with duals
stable n-categories nCob
with duals

k-tuply groupal I, (S
n-groupoids
k-tuply groupal S
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w-groupoids
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