
Why n-Categories?

John C. Baez
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Every Interesting Equation is a Lie!

x = x true, but boring

x = y potentially interesting−

but says two different

things are the same !

Any interesting equation is really a summary of
an interesting process. For example:

2 + 3
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is short for:
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Codimension 1:

Composition, Associator,...

We add by putting 0-dimensional rocks in a
1-dimensional line:
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Proving associativity takes time:
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We call this proof the associator: note 1-dimensional
‘worldlines’ in 2-dimensional ‘spacetime’, hence
again codimension 2-1 = 1.
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The associator satisfies the pentagon

identity:
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But the process of proving this traces out a 2d
surface in 3 dimensions: the pentagonator!

And so on....
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Higher Associative Laws:

a Simplicial Viewpoint

The hierarchy of ‘higher associative laws’ can also
be formalized using simplices:
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If every way of filling the triangular ‘horn’ factors
through F , we may call it a process of compos-

ing A and B, and call C a composite. This
applies to addition of sets:
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and many other examples, especially composi-

tion of paths in a topological space.
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Considering higher-dimensional horns, we get this
hierarchy:

Object:

�������
�

Morphism:

���
�

������������
A

Composition:

AB

BA

��	
	



�
�

��




Associator:

A

B

C

)BC(A

A

B

C

AB( )C
������������ ������������

������������ ������������

���
�

���
�

���
�

���
�

6



Pentagonator:
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... and so on forever: the Stasheff associahedra!

(But there’s a subtlety in higher dimensions,
appearing already in the next associahedron: the
commutative law gets involved!)
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Codimension 2:

Braiding, Yang–Baxterator,...

If space is at least 2-dimensional, we can prove
the commutative law:

A + B = B + A

by sliding two piles of rocks around each other.
But the proof takes time:
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Note 1-dimensional ‘worldlines’ in 3-dimensional
‘spacetime’: the braiding. The braiding in turn
satisfies the Yang–Baxter equation:

A B C

C B A

%%
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A B C

C B A
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The process of proving the Yang–Baxter equa-
tion traces out a 2d surface in 4 dimensions, the
Yang–Baxterator:
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This in turn satisfies the Zamolodchikov

tetrahedron equation:
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but the proof of this traces out a 3d surface in 5
dimensions... and so on!
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Higher Commutative Laws:

a Cubical Viewpoint

The hierarchy of ‘higher commutative laws’ can
also be formalized using cubes.

Braiding:
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Similarly, the Zamolodchikov tetrahedron equa-
tion relates the ‘front’ and ‘back’ of a 4-cube,
each of which is built from 4 Yang–Baxterator
3-cubes... and so on!
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Codimension 3: Syllepsis,...

If space is 2-dimensional, there are two funda-
mentally different proofs that A + B = B + A:
the braiding versus the inverse braiding:
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since these are nonisotopic braids in 3d space-
time. But if space is at least 3-dimensional, one
proof can be continuously deformed to the other:
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since all braids in 4d spacetime are isotopic! This
process traces out a 2d surface in 5 dimensions:
the syllepsis.
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The syllepsis satisfies a law of its own... but the
proof of this traces out a 3d surface in 6 dimen-
sions... and so on!

And so on for higher codimensions!

For example, in codimension 4 we get an isotopy
between the syllepsis and the ‘inverse syllepsis’,
which are 2d surfaces in 6 dimensions. This iso-
topy traces out a 3d surface in 7 dimensions, and
satisfies a law whose proof traces out a 4d surface
in 8 dimensions, etc....

In short: a hierarchy of ‘higher braid-

ings’, one for each codimension k ≥ 2,
each satisfying a hierarchy of laws.

Warning: this is a drastically simplified version
of the story!
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Why n-Categories?

We’ve seen how beautiful but overwhelmingly
complex structures arise when we treat every

equation as a summary of a process. I’ve only
begun to describe these structures! To keep track
of them, we need n-categories - and not just a
definition, but a detailed theory of them.

In particular:

Let a k-tuply monoidal n-category be an
(n+k)-category that is trivial below dimension k

- viewed as an n-category with k ways to multiply
objects.

Everything I’ve said so far should be summarized
by some theorem relating k-tuply monoidal n-
categories to ‘n-braids in codimension k’. A bit
more precisely...
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The Braid Hypothesis: The free k-tuply
monoidal n-category on one object is nBraidk,
where:

• objects are finite collections of points in R
k,

i.e. elements of

Xk =
∞⊔

j=0

{(x1, . . . , xj) : xi ∈ R
k, xi distinct}

Sj

• morphisms are paths in Xk,

• 2-morphisms are paths of paths in Xk,

• etc...

• n-morphisms are homotopy classes of paths
of paths of paths... in Xk.
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THE PERIODIC TABLE

We expect k-tuply monoidal

n-categories go like this:

n = 0 n = 1 n = 2

k = 0 sets categories 2-categories

k = 1 monoids monoidal monoidal

categories 2-categories

k = 2 commutative braided braided

monoids monoidal monoidal

categories 2-categories

k = 3 ‘’ symmetric sylleptic

monoidal monoidal

categories 2-categories

k = 4 ‘’ ‘’ symmetric

monoidal

2-categories

k = 5 ‘’ ‘’ ‘’

k = 6 ‘’ ‘’ ‘’

• n acts like the dimension.

• k acts like the codimension.
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The Braid Hypothesis: Examples

The free monoid on one generator is 0Braid1, the
natural numbers: isotopy classes of collec-
tions of points on the line.

The free braided monoidal category on one gen-
erator is 1Braid2, the braid groupoid: collec-
tions of points in the plane and isotopy classes of
braids in 3d going between these.

The free symmetric monoidal category on one
generator is 1Braid3, the groupoid of finite

sets: collections of points in R
3 and isotopy

classes of braids in 4d going between these. We

live here!

The free braided monoidal 2-category on one gen-
erator is 2Braid4, the 2-braid 2-groupoid:
colllections of points in the plane, braids in 3d
between these, and isotopy classes of 2-braids in
4d between these.

All these are just different views of a single con-
cept: ‘the true natural numbers’.
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How To Understand n-Categories

Topology lights the way, since every space X has
a ‘fundamental ω-groupoid’, Π∞(X). In the sim-
plicial framework:
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it’s the simplicial set whose j-cells are just maps

F : ∆j → X.

Technically this is a Kan complex: every horn
has a filler!

The Homotopy Hypothesis (baby version):
equivalence classes of ω-groupoids are the same
as homotopy types: homotopy equivalence
classes of locally nice spaces (e.g. CW complexes).

nBraidk corresponds to the homotopy type where
we take Xk, the space of finite collections of points
in R

k, and ‘kill homotopy groups above πn’ by
attaching cells.
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This is Just the Beginning...

... though not of my talk, you’ll be glad to know.

More interesting than n-groupoids are ‘n-categories
with duals’, where all j-morphisms have, not weak
inverses, but ‘duals’ or ‘adjoints’:

A A*

AA*

satisfying weakened ‘zigzag identities’:

A A A* A*

A*A*AA

= =

which satisfy laws of their own... and so on.

This allows a form of ‘subtraction’, so it gives us
some new views of ‘the true integers’....
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The Tangle Hypothesis: The free k-tuply
monoidal n-category with duals on one genera-
tor is nTangk: top-dimensional morphisms are
n-dimensional framed tangles in n + k dimen-
sions.
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Algebraic Structures and the

Free Such Structures on

One Generator

sets 1

monoids N

groups Z

k-tuply monoidal nBraidk '

n-categories Πn+k(Xk)

k-tuply monoidal Xk

ω-categories

k-tuply groupal Πn+k(S
k)

n-groupoids

k-tuply groupal Sk

ω-groupoids

strict k-tuply groupal K(Z, k)

ω-groupoids

k-tuply monoidal nTangk

n-categories with duals

Thom-Pontryagin map:

nTangk → Πn+k(S
k)

From homotopy to homology:

Πn+k(S
k) → K(Z, k)

20


