Why *n*-Categories? John C. Baez

many figures by Aaron Lauda

Every Interesting Equation is a Lie!

- x = x true, but boring
- x = y potentially interestingbut says two *different* things are *the same*!

Any interesting equation is really a summary of an interesting *process*. For example:

is short for:

Codimension 1: Composition, Associator,...

We add by putting 0-dimensional rocks in a 1-dimensional line:

Proving associativity takes time:

We call this proof the **associator**: note 1-dimensional 'worldlines' in 2-dimensional 'spacetime', hence again codimension 2-1 = 1. The associator satisfies the **pentagon identity**:

But the process of proving this traces out a 2d surface in 3 dimensions: the **pentagonator**! And so on....

Higher Associative Laws: a Simplicial Viewpoint

The hierarchy of 'higher associative laws' can also be formalized using *simplices*:

If every way of filling the triangular 'horn' factors through F, we may call it *a process of composing* A and B, and call C *a composite*. This applies to addition of sets:

and many other examples, especially *composition of paths in a topological space*. Considering higher-dimensional horns, we get this hierarchy:

Object:

Associator:

Pentagonator:

... and so on forever: the Stasheff associahedra!

(But there's a subtlety in higher dimensions, appearing already in the next associahedron: the *commutative* law gets involved!)

Codimension 2: Braiding, Yang–Baxterator,...

If space is at least 2-dimensional, we can prove the commutative law:

$$A + B = B + A$$

by sliding two piles of rocks around each other. But the proof takes time:

Note 1-dimensional 'worldlines' in 3-dimensional 'spacetime': the **braiding**. The braiding in turn satisfies the **Yang–Baxter equation**:

The process of proving the Yang–Baxter equation traces out a 2d surface in 4 dimensions, the **Yang–Baxterator**:

This in turn satisfies the **Zamolodchikov tetrahedron equation**:

but the proof of this traces out a 3d surface in 5 dimensions... and so on!

Higher Commutative Laws: a Cubical Viewpoint

The hierarchy of 'higher commutative laws' can also be formalized using *cubes*.

Braiding:

Yang-Baxterator:

Similarly, the Zamolodchikov tetrahedron equation relates the 'front' and 'back' of a 4-cube, each of which is built from 4 Yang–Baxterator 3-cubes... and so on!

Codimension 3: Syllepsis,...

If space is 2-dimensional, there are two fundamentally different proofs that A + B = B + A: the **braiding** versus the **inverse braiding**:

since these are nonisotopic braids in 3d spacetime. But if space is at least 3-dimensional, one proof can be continuously deformed to the other:

since all braids in 4d spacetime are isotopic! This process traces out a 2d surface in 5 dimensions: the **syllepsis**.

The syllepsis satisfies a law of its own... but the proof of this traces out a 3d surface in 6 dimensions... and so on!

And so on for higher codimensions!

For example, in codimension 4 we get an isotopy between the syllepsis and the 'inverse syllepsis', which are 2d surfaces in 6 dimensions. This isotopy traces out a 3d surface in 7 dimensions, and satisfies a law whose proof traces out a 4d surface in 8 dimensions, etc....

In short: a hierarchy of 'higher braidings', one for each codimension $k \ge 2$, each satisfying a hierarchy of laws.

Warning: this is a drastically **simplified** version of the story!

Why *n*-Categories?

We've seen how beautiful but overwhelmingly complex structures arise when we *treat every equation as a summary of a process*. I've only *begun* to describe these structures! To keep track of them, we need *n*-categories - and not just a definition, but a detailed theory of them.

In particular:

Let a *k***-tuply monoidal** *n***-category** be an (n+k)-category that is trivial below dimension k - viewed as an *n*-category with k ways to multiply objects.

Everything I've said so far should be summarized by some theorem relating k-tuply monoidal ncategories to 'n-braids in codimension k'. A bit more precisely... The Braid Hypothesis: The free k-tuply monoidal n-category on one object is $nBraid_k$, where:

• objects are finite collections of points in \mathbb{R}^k , i.e. elements of

$$X_k = \bigsqcup_{j=0}^{\infty} \frac{\{(x_1, \dots, x_j) \colon x_i \in \mathbb{R}^k, x_i \text{ distinct}\}}{S_j}$$

- morphisms are paths in X_k ,
- 2-morphisms are paths of paths in X_k ,
- etc...
- *n*-morphisms are homotopy classes of paths of paths of paths... in X_k .

THE PERIODIC TABLE

We expect k-tuply monoidal n-categories go like this:

	n = 0	n = 1	n = 2
k = 0	sets	categories	2-categories
k = 1	monoids	monoidal	monoidal
		categories	2-categories
k = 2	commutative	braided	braided
	$\operatorname{monoids}$	monoidal	monoidal
		categories	2-categories
k = 3	٤,	symmetric	sylleptic
		monoidal	monoidal
		categories	2-categories
k = 4	6,	6,	symmetric
			monoidal
			2-categories
k = 5	٤,	٤,	٤,
k = 6	٤,	٤,	٤,

• n acts like the *dimension*.

• k acts like the *codimension*.

The Braid Hypothesis: Examples

The free monoid on one generator is $0Braid_1$, the **natural numbers**: isotopy classes of collections of points on the line.

The free braided monoidal category on one generator is $1Braid_2$, the **braid groupoid**: collections of points in the plane and isotopy classes of braids in 3d going between these.

The free symmetric monoidal category on one generator is 1Braid₃, the **groupoid of finite sets**: collections of points in \mathbb{R}^3 and isotopy classes of braids in 4d going between these. We live here!

The free braided monoidal 2-category on one generator is $2Braid_4$, the **2-braid 2-groupoid**: collections of points in the plane, braids in 3d between these, and isotopy classes of 2-braids in 4d between these.

All these are just different *views* of a single concept: 'the true natural numbers'.

How To Understand n-Categories

Topology lights the way, since every space X has a 'fundamental ω -groupoid', $\Pi_{\infty}(X)$. In the simplicial framework:

it's the simplicial set whose j-cells are just maps

 $F: \Delta^j \to X.$

Technically this is a **Kan complex**: every horn has a filler!

The Homotopy Hypothesis (baby version): equivalence classes of ω -groupoids are the same as **homotopy types**: homotopy equivalence classes of locally nice spaces (e.g. CW complexes).

 $n \operatorname{Braid}_k$ corresponds to the homotopy type where we take X_k , the space of finite collections of points in \mathbb{R}^k , and 'kill homotopy groups above π_n ' by attaching cells.

This is Just the Beginning...

... though not of my talk, you'll be glad to know.

More interesting than n-groupoids are 'n-categories with duals', where all j-morphisms have, not weak inverses, but 'duals' or 'adjoints':

satisfying weakened 'zigzag identities':

which satisfy laws of their own... and so on.

This allows a form of 'subtraction', so it gives us some new views of 'the true integers'.... The Tangle Hypothesis: The free k-tuply monoidal n-category with duals on one generator is nTang_k: top-dimensional morphisms are n-dimensional framed tangles in n + k dimensions.

Algebraic Structures and the Free Such Structures on One Generator

sets	1
monoids	\mathbb{N}
groups	\mathbb{Z}
k-tuply monoidal	$n \operatorname{Braid}_k \simeq$
n-categories	$\Pi_{n+k}(X_k)$
k-tuply monoidal	X_k
ω -categories	
k-tuply groupal	$\Pi_{n+k}(S^k)$
n-groupoids	
k-tuply groupal	S^k
$\omega ext{-}\mathbf{groupoids}$	
strict k-tuply groupal	$K(\mathbb{Z},k)$
$\omega ext{-groupoids}$	
k-tuply monoidal	$n \operatorname{Tang}_k$
<i>n</i> -categories with duals	

Thom-Pontryagin map:

$$n \operatorname{Tang}_k \to \Pi_{n+k}(S^k)$$

From homotopy to homology:

$$\Pi_{n+k}(S^k) \to K(\mathbb{Z},k)$$