Lie 2-Groups, Lie 2-Algebras, and Loop Groups

Alissa S. Crans

Joint work with:

John Baez
Urs Schreiber
& Danny Stevenson

in memory of
Saunders Mac Lane

April 8, 2006
Internalization

Often a useful first step in the categorification process involves using a technique developed by Ehresmann called ‘internalization.’

How do we do this?

- Given some concept, express its definition completely in terms of commutative diagrams.
- Now interpret these diagrams in some ambient category K.

We will consider the notion of a ‘category in K’ for various categories K.

A **strict 2-group** is a category in Grp, the category of groups.

A **2-vector space** is a category in Vect, the category of vector spaces.
A 2-vector space, V, consists of:

- a vector space of objects, $Ob(V)$

- a vector space of morphisms, $Mor(V)$

Together with:

- linear source and target maps
 \[s, t: Mor(V) \to Ob(V), \]

- a linear identity-assigning map
 \[i: Ob(V) \to Mor(V), \]

- a linear composition map
 \[\circ: Mor(V) \times_{Ob(V)} Mor(V) \to Mor(V) \]
such that the following diagrams commute, expressing the usual category laws:

- laws specifying the source and target of identity morphisms:

\[
\begin{array}{ccc}
\text{Ob}(V) & \xleftarrow{i} & \text{Mor}(V) \\
\downarrow^{1\text{Ob}(V)} & \downarrow^{s} & \\
\text{Ob}(V) & \end{array}
\quad
\begin{array}{ccc}
\text{Ob}(V) & \xleftarrow{i} & \text{Mor}(V) \\
\downarrow^{1\text{Ob}(V)} & \downarrow^{t} & \\
\text{Ob}(V) & \end{array}
\]

- laws specifying the source and target of composite morphisms:

\[
\begin{array}{ccc}
\text{Mor}(V) \times_{\text{Ob}(V)} \text{Mor}(V) & \xrightarrow{\circ} & \text{Mor}(V) \\
p_1 \downarrow & & \downarrow^{s} \\
\text{Mor}(V) & \xrightarrow{s} & \text{Ob}(V) \\
\end{array}
\quad
\begin{array}{ccc}
\text{Mor}(V) \times_{\text{Ob}(V)} \text{Mor}(V) & \xrightarrow{\circ} & \text{Mor}(V) \\
p_2 \downarrow & & \downarrow^{t} \\
\text{Mor}(V) & \xrightarrow{t} & \text{Ob}(V) \\
\end{array}
\]
• the associative law for composition of morphisms:

\[
\begin{array}{c}
\text{Mor}(V) \times_{\text{Ob}(V)} \text{Mor}(V) \times_{\text{Ob}(V)} \text{Mor}(V) \\
\downarrow \uparrow \downarrow \uparrow \\
\text{Mor}(V) \times_{\text{Ob}(V)} \text{Mor}(V) \xrightarrow{\circ} \text{Mor}(V) \\
\end{array}
\]

• the left and right unit laws for composition of morphisms:

\[
\begin{array}{c}
\text{Ob}(V) \times_{\text{Ob}(V)} \text{Mor}(V) \xrightarrow{i \times 1} \text{Mor}(V) \times_{\text{Ob}(V)} \text{Mor}(V) \\
\downarrow \uparrow \downarrow \uparrow \\
\text{Mor}(V) \xrightarrow{\circ} \text{Mor}(V) \\
\end{array}
\]
We can also define **linear functors** between 2-vector spaces, and **linear natural transformations** between these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear functors and linear natural transformations is equivalent to the 2-category of:

- 2-term chain complexes $C_1 \xrightarrow{d} C_0$,
- chain maps between these,
- chain homotopies between these.
A strict Lie 2-group G is a category in LieGrp, the category of Lie groups.

A strict Lie 2-algebra L is a category in LieAlg, the category of Lie algebras.

We can also define strict homomorphisms between each of these and strict 2-homomorphisms between them, in the obvious way. Thus, we have two strict 2-categories: SLie2Grp and SLie2Alg.

The picture here is very pretty: Just as Lie groups have Lie algebras, strict Lie 2-groups have strict Lie 2-algebras.

Proposition. There exists a unique 2-functor

$$d: \text{SLie2Grp} \rightarrow \text{SLie2Alg}$$
Examples of Strict Lie 2-Groups

Let G be a Lie group and \mathfrak{g} its Lie algebra.

- **Automorphism 2-Group**

 Objects : $= \text{Aut}(G)$
 Morphisms : $= G \rtimes \text{Aut}(G)$

- **Shifted $U(1)$**

 Objects : $= *$
 Morphisms : $= U(1)$

- **Tangent 2-Group**

 Objects : $= G$
 Morphisms : $= \mathfrak{g} \rtimes G \cong TG$

- **Poincaré 2-Group**

 Objects : $= SO(n, 1)$
 Morphisms : $= \mathbb{R}^n \rtimes SO(n, 1) \cong ISO(n, 1)$
A semistrict Lie 2-algebra consists of:

- a 2-vector space L

equipped with:

- a functor called the bracket:

$$\cdot \cdot : L \times L \to L$$

bilinear and skew-symmetric as a function of objects and morphisms,

- a natural isomorphism called the Jacobiator:

$$J_{x,y,z} : [[x, y], z] \to [x, [y, z]] + [[x, z], y],$$

trilinear and antisymmetric as a function of the objects x, y, z,

such that:

- the Jacobiator identity holds, meaning the following diagram commutes:
We can define **homomorphisms** between Lie 2-algebras, and **2-homomorphisms** between these.

Given Lie 2-algebras L and L', a **homomorphism** $F: L \rightarrow L'$ consists of:

- a functor F from the underlying 2-vector space of L to that of L', linear on objects and morphisms,

- a natural isomorphism
 $$F_2(x, y): [F(x), F(y)] \rightarrow F[x, y],$$
bilinear and skew-symmetric as a function of the objects $x, y \in L$,

such that:

- the following diagram commutes for all objects $x, y, z \in L$:

\[
\begin{array}{ccc}
[F(x), [F(y), F(z)]] & \xrightarrow{J_{F(x), F(y), F(z)}} & [[F(x), F(y)], F(z)] + [F(y), [F(x), F(z)]] \\
\downarrow_{[1, F_2]} & & \downarrow_{[F_2, 1]+[1, F_2]} \\
[F(x), F[y, z]] & \xrightarrow{F_2} & [F[x, y], F(z)] + [F(y), F[x, z]] \\
\downarrow_{F_2} & & \downarrow_{F_2+F_2} \\
F[x, [y, z]] & \xrightarrow{F(J_{x, y, z})} & F[[x, y], z] + F[y, [x, z]]
\end{array}
\]
Theorem. The 2-category of Lie 2-algebras, homomorphisms and 2-homomorphisms is equivalent to the 2-category of:

- 2-term L_{∞}-algebras,
- L_{∞}-homomorphisms between these,
- L_{∞}-2-homomorphisms between these.

The Lie 2-algebras L and L' are **equivalent** if there are homomorphisms

$$f: L \to L', \quad \bar{f}: L' \to L$$

that are inverses up to 2-isomorphism:

$$f \bar{f} \cong 1, \quad \bar{f} f \cong 1.$$

Theorem. Lie 2-algebras are classified up to equivalence by quadruples consisting of:

- a Lie algebra \mathfrak{g},
- an abelian Lie algebra (= vector space) \mathfrak{h},
- a representation ρ of \mathfrak{g} on \mathfrak{h},
- an element $[j] \in H^3(\mathfrak{g}, \mathfrak{h})$.
The Lie 2-Algebra \mathfrak{g}_k

Suppose \mathfrak{g} is a finite-dimensional simple Lie algebra over \mathbb{R}. To get a Lie 2-algebra having \mathfrak{g} as objects we need:

- a vector space \mathfrak{h},
- a representation ρ of \mathfrak{g} on \mathfrak{h},
- an element $[j] \in H^3(\mathfrak{g}, \mathfrak{h})$.

Assume without loss of generality that ρ is irreducible. To get Lie 2-algebras with nontrivial Jacobiator, we need $H^3(\mathfrak{g}, \mathfrak{h}) \neq 0$. By Whitehead’s lemma, this only happens when $\mathfrak{h} = \mathbb{R}$ is the trivial representation. Then we have

$$H^3(\mathfrak{g}, \mathbb{R}) = \mathbb{R}$$

with a nontrivial 3-cocycle given by:

$$\nu(x, y, z) = \langle [x, y], z \rangle.$$

The Lie algebra \mathfrak{g} together with the trivial representation of \mathfrak{g} on \mathbb{R} and k times the above 3-cocycle give the Lie 2-algebra \mathfrak{g}_k.

In summary: every simple Lie algebra \mathfrak{g} gives a one-parameter family of Lie 2-algebras, \mathfrak{g}_k, which reduces to \mathfrak{g} when $k = 0$!

Puzzle: Does \mathfrak{g}_k come from a Lie 2-group?
Coherent 2-Groups

A coherent 2-group is a weak monoidal category in which every morphism is invertible and every object is equipped with an adjoint equivalence.

A homomorphism between coherent 2-groups is a weak monoidal functor. A 2-homomorphism is a monoidal natural transformation. The coherent 2-groups X and X' are equivalent if there are homomorphisms

$$f : X \to X', \quad \bar{f} : X' \to X$$

that are inverses up to 2-isomorphism:

$$f \bar{f} \simeq 1, \quad \bar{f} f \simeq 1.$$

Theorem. Coherent 2-groups are classified up to equivalence by quadruplets consisting of:

- a group G,
- an abelian group H,
- an action α of G as automorphisms of H,
- an element $[a] \in H^3(G, H)$.
Suppose we try to copy the construction of \(g_k \) for a particularly nice kind of Lie group. Let \(G \) be a simply-connected compact simple Lie group whose Lie algebra is \(g \). We have

\[
H^3(G, U(1)) \to \mathbb{Z} \to \mathbb{R} \cong H^3(g, \mathbb{R})
\]

Using the classification of 2-groups, we can build a skeletal 2-group \(G_k \) for \(k \in \mathbb{Z} \):

- \(G \) as its group of objects,
- \(U(1) \) as the group of automorphisms of any object,
- the trivial action of \(G \) on \(U(1) \),
- \([a] \in H^3(G, U(1)) \) given by \(k \iota[\nu] \), which is nontrivial when \(k \neq 0 \).

Question: Can \(G_k \) be made into a Lie 2-group?

Here’s the bad news:

(Bad News) Theorem. Unless \(k = 0 \), there is no way to give the 2-group \(G_k \) the structure of a Lie 2-group for which the group \(G \) of objects and the group \(U(1) \) of endomorphisms of any object are given their usual topology.
(Good News) **Theorem.** For any $k \in \mathbb{Z}$, there is a Fréchet Lie 2-group $\mathcal{P}_k G$ whose Lie 2-algebra $\mathcal{P}_k g$ is equivalent to g_k.

An object of $\mathcal{P}_k G$ is a smooth path $f : [0, 2\pi] \to G$ starting at the identity. A morphism from f_1 to f_2 is an equivalence class of pairs (D, α) consisting of a disk D going from f_1 to f_2 together with $\alpha \in U(1)$:

For any two such pairs (D_1, α_1) and (D_2, α_2) there is a 3-ball B whose boundary is $D_1 \cup D_2$, and the pairs are equivalent when

$$\exp \left(2\pi i k \int_B \nu \right) = \frac{\alpha_2}{\alpha_1}$$

where ν is the left-invariant closed 3-form on G with

$$\nu(x, y, z) = \langle [x, y], z \rangle$$

and $\langle \cdot, \cdot \rangle$ is the smallest invariant inner product on g such that ν gives an integral cohomology class.
\(\mathcal{P}_k G \) and Loop Groups

We can also describe the 2-group \(\mathcal{P}_k G \) as follows:

- An object of \(\mathcal{P}_k G \) is a smooth path in \(G \) starting at the identity.
- Given objects \(f_1, f_2 \in \mathcal{P}_k G \), a morphism
 \[\hat{\ell} : f_1 \to f_2 \]
 is an element \(\hat{\ell} \in \Omega_k G \) with
 \[p(\hat{\ell}) = f_2 / f_1 \]
 where \(\Omega_k G \) is the level-\(k \) Kac–Moody central extension of the loop group \(\Omega G \):

\[
1 \longrightarrow U(1) \longrightarrow \Omega_k G \xrightarrow{p} \Omega G \longrightarrow 1
\]

Remark: \(p(\hat{\ell}) \) is a loop in \(G \). We can get such a loop with
\[p(\hat{\ell}) = f_2 / f_1 \]
from a disk \(D \) like this:
The Lie 2-Group $P_k G$

Thus, $P_k G$ is described by the following where $p \in P_0 G$ and $\hat{\gamma} \in \widehat{\Omega_k G}$:

- A Fréchet Lie group of objects:
 $$\text{Ob}(P_k G) = P_0 G$$

- A Fréchet Lie group of morphisms:
 $$\text{Mor}(P_k G) = P_0 G \ltimes \widehat{\Omega_k G}$$

- source map: $s(p, \hat{\gamma}) = p$

- target map: $t(p, \hat{\gamma}) = p \partial(\hat{\gamma})$ where ∂ is defined as the composite
 $$\widehat{\Omega_k G} \overset{p}{\longrightarrow} \Omega \overset{i}{\hookrightarrow} P_0 G$$

- composition: $(p_1, \hat{\gamma}_1) \circ (p_2, \hat{\gamma}_2) = (p_1, \hat{\gamma}_1 \hat{\gamma}_2)$ when $t(p_1, \hat{\gamma}_1) = s(p_2, \hat{\gamma}_2)$, or $p_2 = p_1 \partial(\hat{\gamma}_1)$

- identities: $i(p) = (p, 1)$
Topology of \mathcal{P}_kG

The nerve of any topological 2-group is a simplicial topological group and therefore when we take the geometric realization we obtain a topological group:

Theorem. For any $k \in \mathbb{Z}$, the geometric realization of the nerve of \mathcal{P}_kG is a topological group $|\mathcal{P}_kG|$. We have

$$\pi_3(|\mathcal{P}_kG|) \cong \mathbb{Z}/k\mathbb{Z}$$

When $k = \pm 1$, $$|\mathcal{P}_kG| \cong \hat{G},$$

which is the topological group obtained by killing the third homotopy group of G.

When $G = \text{Spin}(n)$, \hat{G} is called String(n). When $k = \pm 1$, $|\mathcal{P}_kG| \cong \hat{G}$.

The Lie 2-Algebra $\mathcal{P}_k g$

$\mathcal{P}_k G$ is a particularly nice kind of Lie 2-group: a *strict* one! Thus, its Lie 2-algebra is easy to compute. Moreover,

Theorem. $\mathcal{P}_k g \simeq g_k$
We know how to get Lie n-algebras from Lie algebra cohomology! We should:

- Classify their representations
- Find their corresponding Lie n-groups
- Understand their relation to higher braid theory