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Internalization

Often a useful first step in the categorification process
involves using a technique developed by Ehresmann called
‘Internalization.’

How do we do this?

e (Given some concept, express its definition completely
in terms of commutative diagrams.

e Now interpret these diagrams in some ambient cate-
gory K.

We will consider the notion of a ‘category in K’ for various
categories K.

A strict 2-group is a category in Grp, the category of
oroups.

A 2-vector space is a category in Vect, the category of
vector spaces.



A 2-vector space, V', consists of:

e a vector space of objects, Ob(V)

e a vector space of morphisms, Mor(V)
together with:

e linear source and target maps
s,t: Mor(V) — Ob(V),
e a linear identity-assigning map
i: Ob(V) — Mor(V),
e a linear composition map

o: Mor(V') xopvy Mor(V) — Mor(V)



such that the following diagrams commute, expressing the
usual category laws:

e laws specitying the source and target of identity mor-
phisms:

Ob(V)—~Mor(V)  Ob(V)—~Mor(V)

s S

Y ob(V) " ob(V)

e laws specifying the source and target of composite
morphisms:

Mor(V) X Ob(V) Mor(V)—>—Mor(V)

P1 S

Mor(V) i Ob(V)

Mor(V) X Ob(V) Mor(V)—>—Mor(V)

p2 t

Mor(V) L Ob(V)



e the associative law for composition of morphisms:
Mor(V') xopvy Mor(V') xopvy Mor(V) %MOT(V) % opvry Mor(V)
IXop(v)©o .

Mor(V') xopvy Mor(V) 2 Mor(V)

e the left and right unit laws for composition of
morphisms:

Ob(V') X opry Mor(V) 22 Mor(V) x opvry Mor(V) < Mor(V)) X opyy Ob(V')

Mor(V)



2-Vector Spaces

We can also define linear functors between 2-vector
spaces, and linear natural transformations between
these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear
functors and linear natural transformations is equivalent
to the 2-category of:

e 2-term chain complexes Cy 4, Co,
e chain maps between these,

e chain homotopies between these.



Categorified Lie Theory,
strictly speaking...

A strict Lie 2-group G is a category in LieGrp, the
category of Lie groups.

A strict Lie 2-algebra L is a category in LieAlg, the
category of Lie algebras.

We can also define strict homomorphisms between
each of these and strict 2-homomorphisms between
them, in the obvious way. Thus, we have two strict 2-
categories: SLie2Grp and SLie2Alg.

The picture here is very pretty: Just as Lie groups have
Lie algebras, strict Lie 2-groups have strict Lie 2-algebras.

Proposition. There exists a unique 2-functor

d: SLie2Grp — SLie2Alg



Examples of Strict Lie 2-Groups

Let G be a Lie group and g its Lie algebra.

e Automorphism 2-Group

Objects : = Aut(G)
Morphisms : = G x Aut(G)

e Shifted U(1)

Objects : =
Morphisms : = U(1)

e Tangent 2-Group

Objects: = G
Morphisms : = gx G=TG

e Poincaré 2-Group

Objects : = SO(n,1)
Morphisms : = R" x SO(n,1) = 150(n,1)



Semistrict Lie 2-Algebras

A semistrict Lie 2-algebra consists of:
e a 2-vector space L
equipped with:
e a functor called the bracket:
)] Lx L — L
bilinear and skew-symmetric as a function of objects
and morphisms,

e a natural isomorphism called the Jacobiator:

Joyz 12yl 2l = Lo, ly, 2] + Lz, 2], 9,
trilinear and antisymmetric as a function of the objects
T, Y, 2,
such that:

e the Jacobiator identity holds, meaning the follow-
ing diagram commutes:

([[w,x],y],2]
a2 \

([[w,yl, 2], 2]+ [[w,[2,y]],2] [[[w,z],y],2]
ezt w2y, Jiw,aly,=

([[w,yl,2],2] +[[w,y],[2,2]] [[[w,z], 2]yl +[[w,z],[y,z]]

+w,[[z,y],2]]+{[w,2],[2,y]]
[thy,z,x] [Jw,z,zay]

([[w,2]y],2]+[[w,[y,2]] 2] [[w,[z,2]],y]

+[w,yl, [z, 2]+ [w, [[2,y],2]]+[[w,z],[2,y]] +H[w,zl, [y, 2] +[[[w,z],2],y]

w,[z,z],y
[w\Jml\ Ftw, 21y w,a,ly.2)

[[[w,2],y],x]+[[w,2], [zl + [[w,y],[2,2]]
+lw, [,z yll+H[wly 2] 2]+ [w,[2,[y,2]]]



We can define homomorphisms between Lie 2-algebras,
and 2-homomorphisms between these.

Given Lie 2-algebras L and L', a homomorphism
F: L — L' consists of:

e a functor F' from the underlying 2-vector space of L
to that of L', linear on objects and morphisms,

e a natural isomorphism

Fy(z,y): [F(z), Fy)] — Fl, y),

bilinear and skew-symmetric as a function of the
objects x,y € L,

such that:

e the following diagram commutes for all objects
x,Yy,z € L:

[F(x), [F(y), F(2)]] HOLDID([F (), F(y)), F(2)] + [F(y), [F(x), F(2)]
[1,F%)] [F,1]+[1,F%]
[F(x), Fly, 2]] [Flz, y], F(2)] + [F(y), Flz, 2]]




Theorem. The 2-category of Lie 2-algebras, homo-
morphisms and 2-homomorphisms is equivalent to the
2-category of:

e 2-term L..-algebras,
e L.-homomorphisms between these,

e L -2-homomorphisms between these.

The Lie 2-algebras L and L’ are equivalent if there are
homomorphisms

f:L—L f: L' =L
that are inverses up to 2-isomorphism:

i1 e

Theorem. Lie 2-algebras are classified up to equivalence
by quadruples consisting of:

e a Lie algebra g,

e an abelian Lie algebra (= vector space) b,

e a representation p of g on b,

e an clement [j] € H3(g, h).



The Lie 2-Algebra g;

Suppose g is a finite-dimensional simple Lie algebra over
R. To get a Lie 2-algebra having g as objects we need:

e a vector space b,
e a representation p of g on b,

e an clement [j] € H%(g, h).

Assume without loss of generality that p is irreducible.

To get Lie 2-algebras with nontrivial Jacobiator, we need
H3(g,h) # 0. By Whitehead’s lemma, this only happens
when h = R is the trivial representation. Then we have

H’(g,R) =R
with a nontrivial 3-cocycle given by:

viz,y,z) = (|r,yl,2).

The Lie algebra g together with the trivial representation
of g on R and k times the above 3-cocycle give the Lie
2-algebra gp.

In summary: every simple Lie algebra g gives a one-
parameter family of Lie 2-algebras, gi, which reduces
to g when k =0/

Puzzle: Does g; come from a Lie 2-group?



Coherent 2-Groups

A coherent 2-group is a weak monoidal category in
which every morphism is invertible and every object is
equipped with an adjoint equivalence.

A homomorphism between coherent 2-groups is a weak
monoidal functor. A 2-homomorphism is a monoidal
natural transformation. The coherent 2-groups X and
X' are equivalent if there are homomorphisms

f: X —-X f X' —-X
that are inverses up to 2-isomorphism:

fre1  ffeEL

Theorem. Coherent 2-groups are classified up to equiv-
alence by quadruples consisting of:

e a group G,
e an abelian group H,

e an action a of G as automorphisms of H,
e an clement [a] € H*(G, H).



Suppose we try to copy the construction of g; for a par-
ticularly nice kind of Lie group. Let G be a simply-
connected compact simple Lie group whose Lie algebra
is g. We have

HY(G,U(1)) > Z — R = H(g,R)

Using the classification of 2-groups, we can build a
skeletal 2-group G, for k € Z:

e (7 as its group of objects,
e U(1) as the group of automorphisms of any object,
e the trivial action of G on U(1),

e [a] € H3(G,U(1)) given by k¢[v], which is nontrivial
when k # 0.

Question: Can G be made into a Lie 2-group?

Here’s the bad news:

(Bad News) Theorem. Unless k = 0, there is no
way to give the 2-group G the structure of a Lie 2-group
for which the group G of objects and the group U(1) of
endomorphisms of any object are given their usual
topology.



(Good News) Theorem. For any k € 7Z, there is
a Fréchet Lie 2-group PrG whose Lie 2-algebra Prg is
equivalent to gs.

An object of PrG is a smooth path f: |0, 27| — G start-
ing at the identity. A morphism from f; to f, is an equiv-
alence class of pairs (D, a) consisting of a disk D going
from f1 to fo together with o € U(1):

&

For any two such pairs (D, 1) and (D2, as) there is a
3-ball B whose boundary is D; U Dy, and the pairs are
equivalent when

exp <2m'k/ V) = s/
B

where v is the left-invariant closed 3-form on G with

v(z,y,2) = ([z,y],2)

and (-, -) is the smallest invariant inner product on g such
that v gives an integral cohomology class.



P..G and Loop Groups

We can also describe the 2-group PG as follows:

e An object of PrG is a smooth path in G starting at
the identity:.

e GGiven objects f1, fo € PG, a morphism
z Ji— fo

is an element £ € @ with

AN

p(f) = fa/ fr

where @ is the level-k Kac—-Moody central
extension of the loop group QG

1%U(1)—>@LQG—>1

AN

Remark: p(£) is a loop in G. We can get such a loop with

AN

p(f) = f2/ fi
from a disk D like this:

&



The Lie 2-Group PG

Thus, PG is described by the following where p € PyG
and v € (G-

e A Fréchet Lie group of objects:
Ob(P.G) = PG

e A Fréchet Lie group of morphisms:

Mor(PrG) = PG X @
e source map: s(pﬁ) =D

e target map: t(p,7y) = pd(y) where 0 is defined as
the composite

0.G-5065 PG

e composition: (p1,71) © (p2,72) = (p1,7172) when
t(p1, V1) = s(p2,72), or p2 = p1O(71)

e identities: i(p) = (p, 1)



Topology of P.G

The nerve of any topological 2-group is a simplicial
topological group and therefore when we take the geo-
metric realization we obtain a topological group:

Theorem. For any k € Z, the geometric realization of
the nerve of PG is a topological group |PrG|. We have

7T3<|7DkG|) = Z/kZ

When k£ = +1, R

PG| ~ G,
which is the topological group obtained by killing the
third homotopy group of G.

When G = Spin(n), G is called String(n). When
k==1, PG| ~G.



The Lie 2-Algebra P.g

PG is a particularly nice kind of Lie 2-group: a strict
one! Thus, its Lie 2-algebra is easy to compute.
Moreover,

Theorem. P,g >~ g;



Questions

We know how to get Lie n-algebras from Lie algebra
cohomology! We should:

e Classify their representations
e ['ind their corresponding Lie n-groups

e Understand their relation to higher braid theory



