Lie 2-Groups, Lie 2-Algebras, and Loop Groups

Alissa S. Crans

Joint work with:

John Baez Urs Schreiber & Danny Stevenson

in memory of Saunders Mac Lane

April 8, 2006

Internalization

Often a useful first step in the categorification process involves using a technique developed by Ehresmann called 'internalization.'

How do we do this?

- Given some concept, express its definition completely in terms of commutative diagrams.
- Now interpret these diagrams in some ambient category K.

We will consider the notion of a 'category in K' for various categories K.

A **strict 2-group** is a category in Grp, the category of groups.

A **2-vector space** is a category in Vect, the category of vector spaces.

A **2-vector space**, V, consists of:

- a vector space of objects, Ob(V)
- a vector space of morphisms, Mor(V)

together with:

• **linear** source and target maps

$$s, t \colon Mor(V) \to Ob(V),$$

 \bullet a \mathbf{linear} identity-assigning map

$$i\colon Ob(V)\to Mor(V),$$

• a **linear** composition map

$$\circ \colon Mor(V) \times_{Ob(V)} Mor(V) \to Mor(V)$$

such that the following diagrams commute, expressing the usual category laws:

• laws specifying the source and target of identity morphisms:

$$\begin{array}{cccc} Ob(V) \xrightarrow{i} Mor(V) & Ob(V) \xrightarrow{i} Mor(V) \\ & & \downarrow s & & \downarrow t \\ Ob(V) & Ob(V) & Ob(V) \end{array}$$

• laws specifying the source and target of composite morphisms:

• the associative law for composition of morphisms:

• the left and right unit laws for composition of morphisms:

2-Vector Spaces

We can also define **linear functors** between 2-vector spaces, and **linear natural transformations** between these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear functors and linear natural transformations is equivalent to the 2-category of:

- 2-term chain complexes $C_1 \xrightarrow{d} C_0$,
- chain maps between these,
- chain homotopies between these.

Categorified Lie Theory, strictly speaking...

A strict Lie 2-group G is a category in LieGrp, the category of Lie groups.

A strict Lie 2-algebra L is a category in LieAlg, the category of Lie algebras.

We can also define **strict homomorphisms** between each of these and **strict 2-homomorphisms** between them, in the obvious way. Thus, we have two strict 2categories: SLie2Grp and SLie2Alg.

The picture here is very pretty: Just as Lie groups have Lie algebras, strict Lie 2-groups have strict Lie 2-algebras.

Proposition. There exists a unique 2-functor

 $d: SLie2Grp \rightarrow SLie2Alg$

Examples of Strict Lie 2-Groups

Let G be a Lie group and \mathfrak{g} its Lie algebra.

• Automorphism 2-Group

Objects : = $\operatorname{Aut}(G)$ Morphisms : = $G \rtimes \operatorname{Aut}(G)$

• Shifted U(1)

Objects : = *Morphisms : = U(1)

• Tangent 2-Group

Objects : = GMorphisms : $= \mathfrak{g} \rtimes G \cong TG$

• Poincaré 2-Group

Semistrict Lie 2-Algebras

A semistrict Lie 2-algebra consists of:

 \bullet a 2-vector space L

equipped with:

• a functor called the **bracket**:

 $[\cdot, \cdot] \colon L \times L \to L$

bilinear and skew-symmetric as a function of objects and morphisms,

• a natural isomorphism called the **Jacobiator**:

 $J_{x,y,z}: [[x,y],z] \to [x,[y,z]] + [[x,z],y],$

trilinear and antisymmetric as a function of the objects

x, y, z,

such that:

• the **Jacobiator identity** holds, meaning the following diagram commutes:

We can define **homomorphisms** between Lie 2-algebras, and **2-homomorphisms** between these.

Given Lie 2-algebras L and L', a **homomorphism** $F: L \to L'$ consists of:

- a functor F from the underlying 2-vector space of L to that of L', linear on objects and morphisms,
- a natural isomorphism

$$F_2(x,y) \colon [F(x),F(y)] \to F[x,y],$$

bilinear and skew-symmetric as a function of the objects $x, y \in L$,

such that:

• the following diagram commutes for all objects $x, y, z \in L$:

$$\begin{array}{c|c} [F(x), [F(y), F(z)]] & \xrightarrow{J_{F(x), F(y), F(z)}} & [[F(x), F(y)], F(z)] + [F(y), [F(x), F(z)]] \\ & & & & & \\ [1,F_2] & & & & & \\ [1,F_2] & & & & & \\ [F(x), F[y, z]] & & & & & \\ [F(x), F[y, z]] & & & & & \\ F_2 & & \\ F_2 & & \\ F_2 & & & \\ F_2 & & \\ F_2 & & & \\ F_2 & & & \\ F_2 & & \\ F_2 & & \\ F_2 & & \\ F_2 &$$

Theorem. The 2-category of Lie 2-algebras, homomorphisms and 2-homomorphisms is equivalent to the 2-category of:

- 2-term L_{∞} -algebras,
- L_{∞} -homomorphisms between these,
- L_{∞} -2-homomorphisms between these.

The Lie 2-algebras L and L' are **equivalent** if there are homomorphisms

 $f \colon L \to L' \qquad \overline{f} \colon L' \to L$

that are inverses up to 2-isomorphism:

$$f\bar{f} \cong 1, \qquad \bar{f}f \cong 1.$$

Theorem. Lie 2-algebras are classified up to equivalence by quadruples consisting of:

- \bullet a Lie algebra ${\mathfrak g},$
- an abelian Lie algebra (= vector space) \mathfrak{h} ,
- a representation ρ of \mathfrak{g} on \mathfrak{h} ,
- an element $[j] \in H^3(\mathfrak{g}, \mathfrak{h})$.

The Lie 2-Algebra \mathfrak{g}_k

Suppose \mathfrak{g} is a finite-dimensional simple Lie algebra over \mathbb{R} . To get a Lie 2-algebra having \mathfrak{g} as objects we need:

• a vector space \mathfrak{h} ,

• a representation
$$\rho$$
 of \mathfrak{g} on \mathfrak{h} ,

• an element $[j] \in H^3(\mathfrak{g}, \mathfrak{h})$.

Assume without loss of generality that ρ is irreducible. To get Lie 2-algebras with nontrivial Jacobiator, we need $H^3(\mathfrak{g},\mathfrak{h})\neq 0$. By Whitehead's lemma, this only happens when $\mathfrak{h} = \mathbb{R}$ is the trivial representation. Then we have

$$H^3(\mathfrak{g},\mathbb{R})=\mathbb{R}$$

with a nontrivial 3-cocycle given by:

$$\nu(x,y,z)=\langle [x,y],z\rangle.$$

The Lie algebra \mathfrak{g} together with the trivial representation of \mathfrak{g} on \mathbb{R} and k times the above 3-cocycle give the Lie 2-algebra \mathfrak{g}_k .

In summary: every simple Lie algebra \mathfrak{g} gives a oneparameter family of Lie 2-algebras, \mathfrak{g}_k , which reduces to \mathfrak{g} when k = 0!

Puzzle: Does \mathfrak{g}_k come from a Lie 2-group?

Coherent 2-Groups

A **coherent 2-group** is a weak monoidal category in which every morphism is invertible and every object is equipped with an adjoint equivalence.

A **homomorphism** between coherent 2-groups is a weak monoidal functor. A **2-homomorphism** is a monoidal natural transformation. The coherent 2-groups X and X' are **equivalent** if there are homomorphisms

$$f: X \to X' \qquad \overline{f}: X' \to X$$

that are inverses up to 2-isomorphism:

$$f\bar{f} \cong 1, \qquad \bar{f}f \cong 1.$$

Theorem. Coherent 2-groups are classified up to equivalence by quadruples consisting of:

- a group G,
- \bullet an abelian group H,
- an action α of G as automorphisms of H,
- an element $[a] \in H^3(G, H)$.

Suppose we try to copy the construction of \mathfrak{g}_k for a particularly nice kind of Lie group. Let G be a simplyconnected compact simple Lie group whose Lie algebra is \mathfrak{g} . We have

$$H^3(G, \mathrm{U}(1)) \xrightarrow{\iota} \mathbb{Z} \hookrightarrow \mathbb{R} \cong H^3(\mathfrak{g}, \mathbb{R})$$

Using the classification of 2-groups, we can build a skeletal 2-group G_k for $k \in \mathbb{Z}$:

- G as its group of objects,
- U(1) as the group of automorphisms of any object,
- the trivial action of G on U(1),
- $[a] \in H^3(G, U(1))$ given by $k \iota[\nu]$, which is nontrivial when $k \neq 0$.

Question: Can G_k be made into a Lie 2-group?

Here's the bad news:

(Bad News) Theorem. Unless k = 0, there is no way to give the 2-group G_k the structure of a Lie 2-group for which the group G of objects and the group U(1) of endomorphisms of any object are given their usual topology.

(Good News) Theorem. For any $k \in \mathbb{Z}$, there is a Fréchet Lie 2-group $\mathcal{P}_k G$ whose Lie 2-algebra $\mathcal{P}_k \mathfrak{g}$ is equivalent to \mathfrak{g}_k .

An object of $\mathcal{P}_k G$ is a smooth path $f: [0, 2\pi] \to G$ starting at the identity. A morphism from f_1 to f_2 is an equivalence class of pairs (D, α) consisting of a disk D going from f_1 to f_2 together with $\alpha \in \mathrm{U}(1)$:

For any two such pairs (D_1, α_1) and (D_2, α_2) there is a 3-ball *B* whose boundary is $D_1 \cup D_2$, and the pairs are equivalent when

$$\exp\left(2\pi ik\int_B\nu\right) = \alpha_2/\alpha_1$$

where ν is the left-invariant closed 3-form on G with

$$\nu(x,y,z) = \langle [x,y],z\rangle$$

and $\langle \cdot, \cdot \rangle$ is the smallest invariant inner product on \mathfrak{g} such that ν gives an integral cohomology class.

$\mathcal{P}_k G$ and Loop Groups

We can also describe the 2-group $\mathcal{P}_k G$ as follows:

- An object of $\mathcal{P}_k G$ is a smooth path in G starting at the identity.
- Given objects $f_1, f_2 \in \mathcal{P}_k G$, a morphism

$$\widehat{\ell} \colon f_1 \to f_2$$

is an element $\widehat{\ell} \in \widehat{\Omega_k G}$ with

$$p(\widehat{\ell}) = f_2 / f_1$$

where $\widehat{\Omega}_k \widehat{G}$ is the level-k Kac–Moody central extension of the loop group ΩG :

$$1 \longrightarrow \mathrm{U}(1) \longrightarrow \widehat{\Omega_k G} \stackrel{p}{\longrightarrow} \Omega G \longrightarrow 1$$

Remark: $p(\hat{\ell})$ is a loop in G. We can get such a loop with

$$p(\widehat{\ell}) = f_2/f_1$$

from a disk D like this:

The Lie 2-Group $\mathcal{P}_k G$

Thus, $\mathcal{P}_k G$ is described by the following where $p \in P_0 G$ and $\hat{\gamma} \in \widehat{\Omega_k G}$:

• A Fréchet Lie group of **objects**:

 $\operatorname{Ob}(\mathcal{P}_k G) = P_0 G$

• A Fréchet Lie group of **morphisms**:

$$Mor(\mathcal{P}_k G) = P_0 G \ltimes \widehat{\Omega_k G}$$

- source map: $s(p, \hat{\gamma}) = p$
- target map: $t(p, \hat{\gamma}) = p\partial(\hat{\gamma})$ where ∂ is defined as the composite

$$\widehat{\Omega_k G} \xrightarrow{p} \Omega G \xrightarrow{i} P_0 G$$

- composition: $(p_1, \hat{\gamma}_1) \circ (p_2, \hat{\gamma}_2) = (p_1, \hat{\gamma}_1 \hat{\gamma}_2)$ when $t(p_1, \hat{\gamma}_1) = s(p_2, \hat{\gamma}_2)$, or $p_2 = p_1 \partial(\hat{\gamma}_1)$
- identities: i(p) = (p, 1)

Topology of $\mathcal{P}_k G$

The **nerve** of any topological 2-group is a **simplicial** topological group and therefore when we take the **geo-metric realization** we obtain a topological group:

Theorem. For any $k \in \mathbb{Z}$, the geometric realization of the nerve of $\mathcal{P}_k G$ is a topological group $|\mathcal{P}_k G|$. We have

$$\pi_3(|\mathcal{P}_kG|) \cong \mathbb{Z}/k\mathbb{Z}$$

When $k = \pm 1$,

$$|\mathcal{P}_k G| \simeq \widehat{G},$$

which is the topological group obtained by killing the third homotopy group of G.

When G = Spin(n), \widehat{G} is called String(n). When $k = \pm 1$, $|\mathcal{P}_k G| \simeq \widehat{G}$.

The Lie 2-Algebra $\mathcal{P}_k \mathfrak{g}$

 $\mathcal{P}_k G$ is a particularly nice kind of Lie 2-group: a *strict* one! Thus, its Lie 2-algebra is easy to compute. Moreover,

Theorem. $\mathcal{P}_k \mathfrak{g} \simeq \mathfrak{g}_k$

Questions

We know how to get Lie n-algebras from Lie algebra cohomology! We should:

- Classify their representations
- Find their corresponding Lie n-groups
- Understand their relation to higher braid theory