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Gauge Theory

Ordinary gauge theory describes how point particles trans-

form as they move along paths in spacetime:

•
''
•

It’s natural to assign a group element to each path, called
its ‘holonomy’:

•

g
&&
•

and require that composing paths correspond to multi-

plying holonomies:

•

g1

&&
•

g2

&&
•

while reversing a path corresponds to taking the inverse
of its holonomy:

• •

g−1

xx

The associative law makes the holonomy along a triple
composite unambiguous:

•

g1

&&
•

g2

&&
•

g3

&&
•

In short: the topology dictates the algebra!

The electromagnetic field is described using the group
U(1). Other forces are described using other groups.
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Higher Gauge Theory

Higher gauge theory describes not just how point parti-

cles but also how 1-dimensional strings transform as they
move. For this we must categorify the notion of a group!
A ‘2-group’ has objects:

•

g
&&
•

and also morphisms:

•

g1

&&

g2

88f
��

•

We can multiply objects:

•

g1

&&
•

g2

&&
•

multiply morphisms:

•

g1

&&

g′
1

88f1��
•

g2

&&

g′
2

88f2��
•

and also compose morphisms:

•

g

!!g′
//

f
��

g′′

==
f ′

��

•

Various laws should hold... all dictated by the topology.

We can make this precise and categorify all of gauge

theory. Today we’ll do this for trivial bundles and 2-
bundles; tomorrow for nontrivial ones.
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Smooth Spaces

Alas, the category of smooth manifolds is a bit delicate:

• Given smooth manifolds X, Y , the space of smooth
maps f : X → Y between is usually not a smooth

manifold.

• Given smooth maps f, g : X → Y , the solution set
{f(x) = g(x)} ⊆ X is usually not a smooth mani-

fold.

So, let’s use a more robust category! There are many

choices. Just to be specific, let’s use Chen’s:

Let a convex set be a convex subset of R
n for any n.

Define a smooth space to be a set X with, for each
convex set C, a collection of functions φ : C → X called

plots such that:

1. If φ : C → X is a plot and f : C ′ → C is a smooth
map between convex sets, then φ ◦ f : C ′ → X is a
plot.

2. If iα : Cα → C is an open cover of a convex set C by

convex subsets Cα, and φ : C → X has the property
that φ ◦ iα is a plot for all α, then φ is a plot.

3. Every map from a point to X is a plot.

Given smooth spaces X, Y , define a map f : X → Y to
be smooth if φ◦f : C → Y is a plot whenever φ : C → X

is a plot.
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Let C∞ be the category of smooth spaces and smooth
spaces. Then:

• C∞ has limits and colimits, and the forgetful functor

C∞ → Set preserves these. So, it has products X×Y

and equalizers

{f(x) = g(x)} ⊆ X.

• C∞ is cartesian closed. So, the space C∞(X, Y ) of

smooth maps from X to Y is again smooth space,
and

C∞(X × Y, Z) ∼= C∞(X, C∞(Y, Z)).

• Every finite-dimensional smooth manifold (possibly
with boundary) is a smooth space; smooth maps be-

tween these are precisely those that are smooth in
the usual sense.

• Every smooth space can be given the strongest topol-

ogy in which all plots are continuous; smooth maps
are then automatically continuous.

• Every subset of a smooth space is a smooth space.

• We can form a quotient of a smooth space X by any

equivalence relation, and the result is again a smooth
space.

• We can define vector fields and differential forms on

smooth spaces, with many of the usual properties.

• Every simplicial set gives a smooth space whose de
Rham cohomology matches its ordinary cohomology

with R coefficients.

A nice category like this lets us develop smooth homotopy

theory!
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The Holonomy Along a Path

Let M be a smooth space. Let G be a smooth group:

a smooth space that is a group with all the group oper-
ations being smooth (e.g. a Lie group). Let g be the Lie
algebra of G.

We want to compute a holonomy hol(γ) ∈ G for any
path γ : [t0, t1] → M . We seek to do this using a g-valued

1-form A on M , as follows:

Solve this differential equation:

d

dt
g(t) = A(γ ′(t)) g(t)

with initial value g(t0) = 1. Then let:

hol(γ) = g(t1).

We say the smooth group G is exponentiable if the
above differential equation always has a smooth solution.

For example: any Lie group is exponentiable, or any loop
group C∞(S1, G) of a Lie group G.

Henceforth, we assume all our smooth groups are expo-
nentiable.

6



Holonomy as a Functor

The holonomy along a path doesn’t depend on its parametriza-

tion. When we compose paths, their holonomies multi-
ply:

•
&&
•

&&
•

When we reverse a path, we get a path with the inverse

holonomy:

• •
xx

So, let P1(M) be the path groupoid of M :

• objects are points x ∈ M : • x

• morphisms are thin homotopy classes of smooth paths

γ : [0, 1] → M such that γ(t) is constant near t = 0, 1:

x •

γ
((
• y

This is a smooth groupoid: it has a smooth space
of objects, a smooth space of morphisms, and all the

groupoid operations are smooth.

Theorem. There is a one-to-one correspondence be-

tween smooth functors

hol : P1(M) → G

and g-valued 1-forms A on M .
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Internalization

Now let’s categorify everything in sight and get a theory

of holonomies for paths and surfaces!

The crucial trick is ‘internalization’, developed by Ehres-
mann in the 1960s. Given a familiar gadget x and a cat-

egory K, we define an ‘x in K’ by writing the definition
of x using commutative diagrams and interpreting these

in K.

We need examples where K = C∞ is the category of

smooth spaces:

• A smooth group is a group in C∞.

• A smooth groupoid is a groupoid in C∞.

• A smooth category is a category in C∞.

• A smooth 2-group is a 2-group in C∞.

• A smooth 2-groupoid is a 2-groupoid in C∞.

• A smooth 2-category is a 2-category in C∞.

A category with all morphisms invertible is a groupoid.
A groupoid with one object is a group. A 2-category

with all morphisms and 2-morphisms invertible is a 2-
groupoid. A 2-groupoid with one object is a 2-group.

Here we only consider ‘strict’ 2-categories, hence strict
2-groupoids and 2-groups. Recall the definition....
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A 2-category has a set of objects:

• x

a set of morphisms:

x •

γ
((
• y

and a set of 2-morphisms:

x •

γ1

��

γ2

@@
• yΣ

��

We can compose morphisms:

x •

γ1

(( •y

γ2

((
• z

and compose 2-morphisms vertically and horizontally:

x •

γ1

##γ2 //
Σ��

γ3

;;
Σ′

��

• x •

γ1

&&

γ ′
1

88Σ1��
•

γ2

&&

γ ′
2

88Σ2��
•

Each composition satisfies the unit law and associativity;

they also obey the interchange law, which says this
diagram gives a well-defined 2-morphism:

• • •GG
��
GG

��
// //

��

����

��
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The Path 2-Groupoid

Just as holonomies along paths involve the path groupoid,

holonomies over surfaces involve the path 2-groupoid
P2(M) of a smooth space M :

• objects are points of M : • x

• morphisms are thin homotopy classes of smooth paths

γ : [0, 1] → M such that γ(t) is constant in a neigh-
borhood of t = 0 and t = 1:

x •

γ
((
• y

• 2-morphisms are thin homotopy classes of smooth

maps Σ: [0, 1]2 → M such that Σ(s, t) is independent
of s in a neighborhood of s = 0 and s = 1, and

constant in a neighborhood of t = 0 and t = 1:

x •

γ1

��

γ2

@@
• yΣ

��

Theorem. For any smooth space M , P2(M) is a smooth
2-groupoid.
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2-Groups

In higher gauge theory, holonomies takes values in a
smooth 2-group!

A 2-group G is a 2-groupoid with just one object:

•

To reduce complexity, we can think of G as a category
with objects like this:

•

g
&&
•

and morphisms like this:

•

g
&&

g′
88f

��
•

A 2-group is then the same as a strict monoidal category

(G,⊗, 1) where every morphism has an inverse, and also
every object g has an inverse:

g ⊗ g−1 = g−1 ⊗ g = 1.

For example: any category C has an automorphism

2-group AUT(C), whose objects are invertible functors
g : C → C and whose morphisms are natural isomor-

phisms f : g ⇒ g′ between these. We used this already
in Schreier theory, in the case where C was a mere group.

Similarly, any smooth category C has a smooth 2-group

AUT(C).
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Crossed Modules

Any 2-group G is determined by:

• the group G consisting of all objects of G,

• the group H consisting of all morphisms of G with
source 1,

• the homomorphism t : H → G sending each mor-

phism in H to its target,

• the action α of G on H defined using conjugation in

the group of all morphisms of G:

α(g)h = 1gh1g
−1

The system (G, H, t, α) satisfies two equations making it
into a crossed module:

t(α(g) h) = g t(h) g−1 equivariance

α(t(h)) h′ = hh′h−1 the Peiffer identity.

Conversely, crossed module gives a 2-group.

We can internalize this result: smooth 2-groups are the

same as smooth crossed modules!

Differentiating everything in a smooth crossed module,

we get a differential crossed module (g, h, dt, dα).
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Holonomy as a 2-Functor

Let M be a smooth space. Let G be a smooth 2-group,

(G, H, t, α) its smooth crossed module and (g, h, dt, dα)
its differential crossed module. Assume G and H are
exponentiable.

Theorem. There is a one-to-one correspondence be-
tween smooth 2-functors

hol : P2(M) → G

x •

γ

&&

η

88
• yΣ

��

7→ •

hol(γ)

$$

hol(η)

:: •hol(Σ)
��

and pairs (A, B) consisting of a g-valued 1-form A and an
h-valued 2-form B on M with vanishing fake curvature:

dA + A ∧ A + dt(B) = 0.

Punchline. When G = AUT(H) for some Lie group H,

the pair (A, B) is what Breen and Messing call a connec-

tion on a trivial nonabelian H-gerbe. The only difference

is that they don’t demand vanishing fake curvature. But,
they don’t get holonomies for surfaces!
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