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Gauge Theory

Ordinary gauge theory describes how point particles trans-
form as they move along paths in spacetime:
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It’s natural to assign a group element to each path, called
its ‘holonomy’:
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and require that composing paths correspond to multi-
plying holonomies:
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while reversing a path corresponds to taking the inverse
of its holonomy:

The associative law makes the holonomy along a triple
composite unambiguous:

In short: the topology dictates the algebra!

The electromagnetic field is described using the group
U(1). Other forces are described using other groups.



Higher (Gauge Theory

Higher gauge theory describes not just how point parti-
cles but also how 1-dimensional strings transform as they
move. For this we must categorify the notion of a group!
A ‘2-group’ has objects:

and also morphisms:

We can multiply objects:
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multiply morphisms:
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and also compose morphisms:
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Various laws should hold... all dictated by the topology.

We can make this precise and categorify all of gauge
theory. Today we’ll do this for trivial bundles and 2-
bundles; tomorrow for nontrivial ones.
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Smooth Spaces

Alas, the category of smooth manifolds is a bit delicate:

e Given smooth manifolds X, Y, the space of smooth
maps f: X — Y between is usually not a smooth
manifold.

e Given smooth maps f,g: X — Y, the solution set
{f(z) = g(z)} C X is usually not a smooth mani-
fold.

So, let’s use a more robust category! There are many
choices. Just to be specific, let’s use Chen’s:

Let a convex set be a convex subset of R" for any n.

Define a smooth space to be a set X with, for each
convex set C, a collection of functions ¢: C' — X called
plots such that:

1.If ¢: C — X is a plot and f: C' — C' is a smooth
map between convex sets, then ¢po f: C' — X is a
plot.

2. It i,: Cy — C'is an open cover of a convex set C' by
convex subsets C,, and ¢: C — X has the property
that ¢ o i, is a plot for all o, then ¢ is a plot.

3. Every map from a point to X is a plot.

Given smooth spaces X,Y, define a map f: X — Y to
be smooth if pof: C' — Y is a plot whenever ¢: C' — X
is a plot.



Let C'™ be the category of smooth spaces and smooth
spaces. Then:

e ('™ has limits and colimits, and the forgetful functor
C*° — Set preserves these. So, it has products X xY
and equalizers

{f(z) =g(x)} € X.

e (™ is cartesian closed. So, the space C*(X,Y") of
smooth maps from X to Y is again smooth space,
and

C¥(X x Y, Z) = O%(X,C°(Y, Z)).

e Every finite-dimensional smooth manifold (possibly
with boundary) is a smooth space; smooth maps be-
tween these are precisely those that are smooth in
the usual sense.

e Every smooth space can be given the strongest topol-
ogy in which all plots are continuous; smooth maps
are then automatically continuous.

e Every subset of a smooth space is a smooth space.

e We can form a quotient of a smooth space X by any
equivalence relation, and the result is again a smooth
space.

e We can define vector fields and differential forms on
smooth spaces, with many of the usual properties.

e Every simplicial set gives a smooth space whose de
Rham cohomology matches its ordinary cohomology
with R coefficients.

A nice category like this lets us develop smooth homotopy
theory!



The Holonomy Along a Path

Let M be a smooth space. Let G be a smooth group:
a smooth space that is a group with all the group oper-
ations being smooth (e.g. a Lie group). Let g be the Lie
algebra of G.

We want to compute a holonomy hol(vy) € G for any
path v: [to, t1] — M. We seek to do this using a g-valued
1-form A on M, as follows:

Solve this differential equation:

(1) = A1) g(1

with initial value g(ty) = 1. Then let:

hol(7y) = g(t1).

We say the smooth group G is exponentiable if the
above differential equation always has a smooth solution.

For example: any Lie group is exponentiable, or any loop
group C*(S!, G) of a Lie group G.

Henceforth, we assume all our smooth groups are expo-
nentiable.



Holonomy as a Functor

The holonomy along a path doesn’t depend on its parametriza-
tion. When we compose paths, their holonomies multi-

ply:
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When we reverse a path, we get a path with the inverse

holonomy:
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So, let P1(M) be the path groupoid of M:
e objects are points x € M: ez

e morphisms are thin homotopy classes of smooth paths
7v:[0,1] — M such that v(t) is constant near t = 0, 1:
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This is a smooth groupoid: it has a smooth space
of objects, a smooth space of morphisms, and all the
groupoid operations are smooth.

Theorem. There is a one-to-one correspondence be-
tween smooth functors

hol: Py(M) — G

and g-valued 1-forms A on M.



Internalization

Now let’s categorify everything in sight and get a theory
of holonomies for paths and surfaces!

The crucial trick is ‘internalization’, developed by Ehres-
mann in the 1960s. Given a familiar gadget  and a cat-
egory K, we define an ‘x in K’ by writing the definition
of x using commutative diagrams and interpreting these
in K.

We need examples where K = ('™ is the category of
smooth spaces:

e A smooth group is a group in C*.

e A smooth groupoid is a groupoid in C*°.

e A smooth category is a category in C'™°.

e A smooth 2-group is a 2-group in C'*°.

e A smooth 2-groupoid is a 2-groupoid in C'*™.

e A smooth 2-category is a 2-category in C*.

A category with all morphisms invertible is a groupoid.
A groupoid with one object is a group. A 2-category
with all morphisms and 2-morphisms invertible is a 2-
groupoid. A 2-groupoid with one object is a 2-group.

Here we only consider ‘strict’ 2-categories, hence strict
2-groupoids and 2-groups. Recall the definition....



A 2-category has a set of objects:

o
a set of morphismes:
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and a set of 2-morphisms:

g

V2

We can compose morphisms:
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and compose 2-morphisms vertically and horizontally:

Y
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Each composition satisfies the unit law and associativity;
they also obey the interchange law, which says this
diagram gives a well-defined 2-morphism:
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The Path 2-Groupoid

Just as holonomies along paths involve the path groupoid,

holonomies over surfaces involve the path 2-groupoid
Py (M) of a smooth space M:

e objects are points of M: ez

e morphisms are thin homotopy classes of smooth paths
v:10,1] — M such that ~y(¢) is constant in a neigh-
borhood of t =0 and t = 1:

~
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e 2-morphisms are thin homotopy classes of smooth
maps ¥: [0, 1]2 — M such that (s, t) is independent
of s in a neighborhood of s = 0 and s = 1, and
constant in a neighborhood of t =0 and t = 1:

L

Theorem. For any smooth space M, Py(M) is a smooth
2-groupoid.
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2-Groups

In higher gauge theory, holonomies takes values in a
smooth 2-group!

A 2-group G is a 2-groupoid with just one object:
[

To reduce complexity, we can think of G as a category
with objects like this:

g
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and morphisms like this:

A 2-group is then the same as a strict monoidal category
(G, ®, 1) where every morphism has an inverse, and also
every object g has an inverse:

gRg ' =g 'wg=1

For example: any category C' has an automorphism
2-group AUT(C'), whose objects are invertible functors
g: C — (' and whose morphisms are natural isomor-
phisms f: g = ¢’ between these. We used this already
in Schreier theory, in the case where C' was a mere group.

Similarly, any smooth category C has a smooth 2-group

AUT(C).
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Crossed Modules

Any 2-group G is determined by:
e the group G consisting of all objects of G,

e the group H consisting of all morphisms of G with
source 1,

e the homomorphism ¢: H — G sending each mor-
phism in H to its target,

e the action o of G on H defined using conjugation in
the group of all morphisms of G:

a(g)h = 1,h1,7"

The system (G, H, t, ) satisfies two equations making it
into a crossed module:

t(a(g)h) = gt(h)g' equivariance
a(t(h)) k' = hh'h™!  the Peiffer identity.

Conversely, crossed module gives a 2-group.

We can internalize this result: smooth 2-groups are the
same as smooth crossed modules!

Differentiating everything in a smooth crossed module,
we get a differential crossed module (g, b, dt, da).
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Holonomy as a 2-Functor

Let M be a smooth space. Let G be a smooth 2-group,
(G, H,t,«a) its smooth crossed module and (g, b, dt, da)
its differential crossed module. Assume G and H are
exponentiable.

Theorem. There is a one-to-one correspondence be-
tween smooth 2-functors

hol: Py(M) — G
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and pairs (A, B) consisting of a g-valued 1-form A and an
h-valued 2-form B on M with vanishing fake curvature:

dA+ ANA+di(B) = 0.

Punchline. When G = AUT(H) for some Lie group H,
the pair (A, B) is what Breen and Messing call a connec-
tion on a trivial nonabelian H-gerbe. The only difference
is that they don’t demand vanishing fake curvature. But,
they don’t get holonomies for surfaces!
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