Higher Categories, Higher Gauge Theory - III

John C. Baez

joint work with:
Toby Bartels, Alissa Crans, James Dolan, Aaron Lauda, Urs Schreiber, Danny Stevenson.

Unni Namboodiri Lectures
April 11th, 2006

Notes and references at:

From Covering Spaces To Bundles

One version of the basic principle of Galois theory:
Covering spaces $F \hookrightarrow E \rightarrow B$ are classified by smooth functors

$$
\Pi_{1}(B) \rightarrow \operatorname{Aut}(F) .
$$

Here B is a space but the fiber F is just a set, so $\operatorname{Aut}(F)$ is a discrete group. We get the functor from the covering space by lifting paths:

But what if B is smooth, and F is not just a set but a smooth space, or more generally a smooth category?

Then we need to introduce connections on bundles, or more generally 2-connections on 2-bundles.

Suppose B is a smooth space, F is a smooth space, and G is a smooth group acting on F :

$$
G \rightarrow \operatorname{Aut}(F) .
$$

Now it makes sense to demand that

$$
F \hookrightarrow E \rightarrow B
$$

is a bundle with gauge group G, or ' G-bundle' for short. We must choose a 'connection' to lift smooth paths:

We'll recall these notions and see:
G-bundles $F \hookrightarrow E \rightarrow B$ with connection are classified by smooth anafunctors

$$
\mathcal{P}_{1}(B) \rightarrow G .
$$

Now the fundamental groupoid $\Pi_{1}(B)$ has been replaced by the path groupoid $\mathcal{P}_{1}(B)$, defined last time. The group $\operatorname{Aut}(F)$ has been generalized to any smooth group G acting on F.
$\mathcal{P}_{1}(B)$ is a smooth groupoid; G is a smooth groupoid with one object. For this result the right maps between smooth groupoids are not 'smooth functors', but smooth 'anafunctors'... we'll see why.

Bundles

A bundle over a smooth space B is:

- a smooth space E (the total space),
- a smooth space F (the fiber),
- a smooth map $p: E \rightarrow B$ (the projection),
such that B is covered by open sets U_{i} equipped with diffeomorphisms

$$
t_{i}: p^{-1} U_{i} \rightarrow U_{i} \times F
$$

(local trivializations) such that

commutes.
In other words, E looks locally like the product of B and $F \ldots$ but perhaps not globally.

G-Bundles

If F is a smooth space, $\operatorname{Aut}(F)$ is a smooth group. If $E \rightarrow B$ is a bundle with fiber F, the local trivializations over open sets U_{i} covering B give smooth maps called transition functions:

$$
g_{i j}: U_{i} \cap U_{j} \rightarrow \operatorname{Aut}(F)
$$

via:

$$
t_{j} t_{i}^{-1}(x, f)=\left(x, g_{i j}(x)(f)\right) .
$$

These satisfy the 1-cocycle condition

$$
g_{i j}(x) g_{j k}(x)=g_{i k}(x)
$$

for any $x \in U_{i} \cap U_{j} \cap U_{k}$. In other words, this diagram commutes:

For any smooth group G, we say the bundle $E \rightarrow B$ has G as its gauge group when the maps $g_{i j}$ factor through an action $G \rightarrow \operatorname{Aut}(F)$. We then call $E \rightarrow B$ a G-bundle.

Connections

Last time we treated holonomies as smooth functors

$$
\text { hol: } \mathcal{P}_{1}(B) \rightarrow G
$$

and showed these correspond to \mathfrak{g}-valued 1 -forms A on B. Now this only works locally!

Suppose $E \rightarrow B$ is a G-bundle with local trivializations over neighborhoods U_{i} covering B. Define a connection to be a smooth functor

$$
\operatorname{hol}_{i}: \mathcal{P}_{1}\left(U_{i}\right) \rightarrow G
$$

for each i, such that the transition function $g_{i j}$ defines a smooth natural isomorphism:

$$
g_{i j}:\left.\left.\operatorname{hol}_{i}\right|_{\mathcal{P}_{1}\left(U_{i} \cap U_{j}\right)} \rightarrow \operatorname{hol}_{j}\right|_{\mathcal{P}\left(U_{i} \cap U_{j}\right)}
$$

for all i, j. In other words, this diagram commutes:

for any path $\gamma: x \rightarrow y$ in $U_{i} \cap U_{j}$.
Theorem. There is a one-to-one correspondence between connections on the G-bundle $E \rightarrow B$ and \mathfrak{g}-valued 1-forms A_{i} on the open sets U_{i} satisfying

$$
A_{i}=g_{i j} A_{j} g_{i j}^{-1}+g_{i j} d g_{i j}^{-1}
$$

on the intersections $U_{i} \cap U_{j}$.
So, our definition of connection is secretly the usual one!

Smooth Anafunctors

Given smooth categories X and Y, the obvious sort of map

$$
F: X \rightarrow Y
$$

is a functor that is smooth on objects and on morphisms. Alas, many interesting functors are naturally isomorphic to a smooth one locally, but not globally. The right maps are 'smooth anafunctors' - defined by Toby Bartels in his thesis. He calls them '2-maps' between ' 2 -spaces'.

The holonomy of a connection is an example. For a trivial bundle, this is a smooth functor

$$
\text { hol: } \mathcal{P}_{1}(B) \rightarrow G
$$

For a nontrivial bundle, we only get smooth functors locally:

$$
\operatorname{hol}_{i}: \mathcal{P}_{1}\left(U_{i}\right) \rightarrow G,
$$

but they are related by smooth natural isomorphisms $g_{i j}$ on double intersections $U_{i} \cap U_{j}$, satisfying the 1-cocycle condition on triple intersections $U_{i} \cap U_{j} \cap U_{k}$. This is precisely a smooth anafunctor! So:
G-bundles $F \hookrightarrow E \rightarrow B$ with connection are classified by smooth anafunctors

$$
\mathcal{P}_{1}(B) \rightarrow G .
$$

2-Bundles

Now let's categorify all the above and get higher gauge theory! First we categorify the concept of bundle, following the thesis of Toby Bartels.

We can think of a smooth space M as a smooth category with only identity morphisms. A 2-bundle over M consists of:

- a smooth category E (the total space),
- a smooth category F (the fiber),
- a smooth functor $p: E \rightarrow M$ (the projection), such that M is covered by open sets U_{i} equipped with smooth equivalences

$$
t_{i}: p^{-1} U_{i} \rightarrow U_{i} \times F
$$

(local trivializations) such that

commutes.

\mathcal{G}-2-Bundles

Theorem. Let F be a smooth category and let $\operatorname{AUT}(F)$ be its automorphism 2-group, which is a smooth 2-group. Given a 2-bundle $E \rightarrow B$ with fiber F, the local trivializations over open sets U_{i} covering B give:

- smooth maps

$$
g_{i j}: U_{i} \cap U_{j} \rightarrow \operatorname{Ob}(\operatorname{AUT}(F))
$$

- smooth maps

$$
h_{i j k}: U_{i} \cap U_{j} \cap U_{k} \rightarrow \operatorname{Mor}(\operatorname{AUT}(F))
$$

with

$$
h_{i j k}(x): g_{i j}(x) g_{j k}(x) \rightarrow g_{i k}(x)
$$

satisfying the nonabelian 2-cocycle condition:

on any quadruple intersection $U_{i} \cap U_{j} \cap U_{k} \cap U_{\ell}$.

In other words, this diagram commutes:

For any smooth 2 -group \mathcal{G}, we say a 2 -bundle $E \rightarrow B$ has \mathcal{G} as its gauge 2-group when $g_{i j}$ and $h_{i j k}$ factor through an action $\mathcal{G} \rightarrow \operatorname{AUT}(F)$. We then call $E \rightarrow B$ is a \mathcal{G}-2-bundle.

In general, we expect that \mathcal{G} - n-bundles will be classified by the nth nonabelian Čech cohomology with coefficients in the smooth n-group \mathcal{G}. This is well-known for $n=$ 1. Toby Bartels is writing up the proof for $n=2$. As spinoffs, one obtains:

Theorem. Let \mathcal{G} be the smooth 2-group with one object and $\mathrm{U}(1)$ as morphisms. Then equivalence classes of \mathcal{G} -2-bundles over B are in one-to-one correspondence with $H^{3}(B, \mathbb{Z})$.

Theorem. Let $\mathcal{G}=\operatorname{AUT}(H)$ for some smooth group H. Then the 2-category of \mathcal{G}-2-bundles over B is equivalent to the 2-category of nonabelian H-gerbes over B.

2-Connections

Let \mathcal{G} be a smooth 2-group and let $E \rightarrow B$ be a \mathcal{G}-2bundle equipped with local trivializations over open sets U_{i} covering B. Then a 2 -connection on E consists of the following data:

- For each i a smooth 2-functor:

- For each i, j a pseudonatural isomorphism:

$$
g_{i j}:\left.\left.\operatorname{hol}_{i}\right|_{\mathcal{P}\left(U_{i} \cap U_{j}\right)} \rightarrow \operatorname{hol}_{j}\right|_{\mathcal{P}\left(U_{i} \cap U_{j}\right)}
$$

extending the transition function $g_{i j}$. In other words, for each path $\gamma: x \rightarrow y$ in $U_{i} \cap U_{j}$ a morphism in \mathcal{G} :

depending smoothly on γ, such that this diagram commutes for any surface $\Sigma: \gamma \Rightarrow \eta$ in $U_{i} \cap U_{j}$:

And, we require that:

- for each i, j, k the function $h_{i j k}$ defines a modification:

In other words, this diagrams commutes for any path $\gamma: x \rightarrow y$ in $U_{i} \cap U_{j} \cap U_{k}:$

Theorem. Suppose that $E \rightarrow B$ is a \mathcal{G}-2-bundle with local trivializations over open sets U_{i} covering B. Then there is a one-to-one correspondence between 2-connections on E and Lie-algebra-valued differential forms ($A_{i}, B_{i}, a_{i j}$) satisfying certain equations:

- The holonomy 2-functor hol_{i} is specified by an \mathfrak{g} valued 1-form A_{i} and an \mathfrak{h}-valued 2 -form B_{i} on U_{i}, satisfying the fake flatness condition:

$$
d A_{i}+A_{i} \wedge A_{i}+d t\left(B_{i}\right)=0
$$

- The pseudonatural isomorphism hol ${ }_{i} \xrightarrow{g_{i j}} \operatorname{hol}_{j}$ is specified by the transition functions $g_{i j}$ together with \mathfrak{h} valued 1-forms $a_{i j}$ on $U_{i} \cap U_{j}$, satisfying the equations:

$$
\begin{gathered}
A_{i}=g_{i j} A_{j} g_{i j}^{-1}+g_{i j} d g_{i j}^{-1}-d t\left(a_{i j}\right) \\
B_{i}=\rho\left(g_{i j}\right)\left(B_{j}\right)+d a_{i j}+a_{i j} \wedge a_{i j}+d \rho\left(A_{i}\right) \wedge a_{i j}
\end{gathered}
$$

- For $g_{i j} \circ g_{j k} \xrightarrow{h_{i j k}} g_{i k}$ to be a modification, the functions $h_{i j k}$ must satisfy the equation:

$$
\begin{gathered}
a_{i j}+\rho\left(g_{i j}\right) a_{j k}= \\
h_{i j k} a_{i k} h_{i j k}^{-1}+h_{i j k} d \rho\left(A_{i}\right) h_{i j k}^{-1}+h_{i j k} d h_{i j k}^{-1}
\end{gathered}
$$

Punchline. Except for fake flatness, these weird-looking equations show up already in Breen and Messing's definition of a connection on a nonabelian gerbe! So, 2-bundles and nonabelian gerbes give closely related approaches to higher gauge theory.

Ultimately we expect to find:
\mathcal{G}-2-bundles $F \hookrightarrow E \rightarrow B$ with 2-connection are classified by smooth 2 -anafunctors

$$
\mathcal{P}_{2}(B) \rightarrow \mathcal{G} .
$$

[^0]
[^0]: And why stop at 2? The basic principle of Galois theory keeps growing....

