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From Covering Spaces
To Bundles

One version of the basic principle of Galois theory:

Covering spaces F ↪→ E → B are classified
by smooth functors

Π1(B) → Aut(F ).

Here B is a space but the fiber F is just a set, so Aut(F )
is a discrete group. We get the functor from the covering
space by lifting paths:
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But what if B is smooth, and F is not just a set but a
smooth space, or more generally a smooth category?

Then we need to introduce connections on bundles, or
more generally 2-connections on 2-bundles.
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Suppose B is a smooth space, F is a smooth space, and
G is a smooth group acting on F :

G → Aut(F ).

Now it makes sense to demand that

F ↪→ E → B

is a bundle with gauge group G, or ‘G-bundle’ for short.

We must choose a ‘connection’ to lift smooth paths:
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We’ll recall these notions and see:

G-bundles F ↪→ E → B with connection
are classified by smooth anafunctors

P1(B) → G.

Now the fundamental groupoid Π1(B) has been replaced

by the path groupoid P1(B), defined last time. The
group Aut(F ) has been generalized to any smooth group
G acting on F .

P1(B) is a smooth groupoid; G is a smooth groupoid
with one object. For this result the right maps between

smooth groupoids are not ‘smooth functors’, but smooth
‘anafunctors’... we’ll see why.
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Bundles

A bundle over a smooth space B is:

• a smooth space E (the total space),

• a smooth space F (the fiber),

• a smooth map p : E → B (the projection),

such that B is covered by open sets Ui equipped with
diffeomorphisms

ti : p−1Ui → Ui × F

(local trivializations) such that

p−1Ui

p

��4
44

44
44

44
44

44

ti
// Ui × F

��























Ui

commutes.

In other words, E looks locally like the product of B and

F ... but perhaps not globally.
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G-Bundles

If F is a smooth space, Aut(F ) is a smooth group. If

E → B is a bundle with fiber F , the local trivializations
over open sets Ui covering B give smooth maps called
transition functions:

gij : Ui ∩ Uj → Aut(F )

via:

tjt
−1
i (x, f) = (x, gij(x)(f)).

These satisfy the 1-cocycle condition

gij(x)gjk(x) = gik(x)

for any x ∈ Ui ∩ Uj ∩ Uk. In other words, this diagram
commutes:

gij gjk

gik

For any smooth group G, we say the bundle E → B

has G as its gauge group when the maps gij factor

through an action G → Aut(F ). We then call E → B a
G-bundle.
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Connections

Last time we treated holonomies as smooth functors

hol : P1(B) → G

and showed these correspond to g-valued 1-forms A on

B. Now this only works locally!

Suppose E → B is a G-bundle with local trivializations
over neighborhoods Ui covering B. Define a connection

to be a smooth functor

holi : P1(Ui) → G

for each i, such that the transition function gij defines a
smooth natural isomorphism:

gij : holi|P1(Ui∩Uj) → holj|P(Ui∩Uj)

for all i, j. In other words, this diagram commutes:

gij(x)

gij(y)

holi(γ) holj(γ)

for any path γ : x → y in Ui ∩ Uj.

Theorem. There is a one-to-one correspondence be-

tween connections on the G-bundle E → B and g-valued
1-forms Ai on the open sets Ui satisfying

Ai = gij Aj g−1
ij + gij dg−1

ij

on the intersections Ui ∩ Uj.

So, our definition of connection is secretly the usual one!
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Smooth Anafunctors

Given smooth categories X and Y , the obvious sort of

map
F : X → Y

is a functor that is smooth on objects and on morphisms.

Alas, many interesting functors are naturally isomorphic
to a smooth one locally, but not globally. The right maps

are ‘smooth anafunctors’ — defined by Toby Bartels in
his thesis. He calls them ‘2-maps’ between ‘2-spaces’.

The holonomy of a connection is an example. For a triv-
ial bundle, this is a smooth functor

hol : P1(B) → G.

For a nontrivial bundle, we only get smooth functors
locally:

holi : P1(Ui) → G,

but they are related by smooth natural isomorphisms gij

on double intersections Ui ∩ Uj, satisfying the 1-cocycle

condition on triple intersections Ui ∩ Uj ∩ Uk. This is
precisely a smooth anafunctor! So:

G-bundles F ↪→ E → B with connection

are classified by smooth anafunctors

P1(B) → G.
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2-Bundles

Now let’s categorify all the above and get higher gauge

theory! First we categorify the concept of bundle, follow-
ing the thesis of Toby Bartels.

We can think of a smooth space M as a smooth cate-

gory with only identity morphisms. A 2-bundle over M

consists of:

• a smooth category E (the total space),

• a smooth category F (the fiber),

• a smooth functor p : E → M (the projection),

such that M is covered by open sets Ui equipped with
smooth equivalences

ti : p−1Ui → Ui × F

(local trivializations) such that

p−1Ui

p
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G-2-Bundles

Theorem. Let F be a smooth category and let AUT(F )
be its automorphism 2-group, which is a smooth 2-group.

Given a 2-bundle E → B with fiber F , the local trivial-
izations over open sets Ui covering B give:

• smooth maps

gij : Ui ∩ Uj → Ob(AUT(F ))

• smooth maps

hijk : Ui ∩ Uj ∩ Uk → Mor(AUT(F ))

with
hijk(x) : gij(x)gjk(x) → gik(x)

gij gjk

gik

hijk

satisfying the nonabelian 2-cocycle condition:

hijl
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hikl
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on any quadruple intersection Ui ∩ Uj ∩ Uk ∩ U`.
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In other words, this diagram commutes:

gij gjk

gik

gil gkl

gjl

hijk

hikl

hjklhijl

For any smooth 2-group G, we say a 2-bundle E → B

has G as its gauge 2-group when gij and hijk factor

through an action G → AUT(F ). We then call E → B

is a G-2-bundle.

In general, we expect that G-n-bundles will be classified
by the nth nonabelian Čech cohomology with coefficients
in the smooth n-group G. This is well-known for n =

1. Toby Bartels is writing up the proof for n = 2. As
spinoffs, one obtains:

Theorem. Let G be the smooth 2-group with one object
and U(1) as morphisms. Then equivalence classes of G-

2-bundles over B are in one-to-one correspondence with
H3(B, Z).

Theorem. Let G = AUT(H) for some smooth group H.
Then the 2-category of G-2-bundles over B is equivalent

to the 2-category of nonabelian H-gerbes over B.
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2-Connections

Let G be a smooth 2-group and let E → B be a G-2-

bundle equipped with local trivializations over open sets
Ui covering B. Then a 2-connection on E consists of
the following data:

• For each i a smooth 2-functor:

holi : P2(Ui) → G

x

γ

((

η

66Σ
��

y 7→ •

holi(γ)

((

holi(η)

66holi(Σ)
��

•
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• For each i, j a pseudonatural isomorphism:

gij : holi|P(Ui∩Uj) → holj|P(Ui∩Uj)

extending the transition function gij. In other words,
for each path γ : x → y in Ui ∩ Uj a morphism in G:

gij(x)

gij(y)

holi(γ) holj(γ)
gij(γ)

depending smoothly on γ, such that this diagram

commutes for any surface Σ: γ ⇒ η in Ui ∩ Uj:

holi(γ)
holi(η)holi(Σ)

gij(η)

gij(γ)

gij(x)

gij(y)

holj(γ)
holj(η)holj(Σ)
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And, we require that:

• for each i, j, k the function hijk defines a modifica-
tion:

holi

holj

holk

gij gjk

gik

hijk

In other words, this diagrams commutes for any path
γ : x → y in Ui ∩ Uj ∩ Uk:

holk(γ)holi(γ)

holj(γ)

gik(y)

gik(x)

gij(y)

gij(x)

gjk(y)

gjk(x)

hijk(y)

hijk(x)

gik(γ)

gij(γ)
gjk(γ)
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Theorem. Suppose that E → B is a G-2-bundle with
local trivializations over open sets Ui covering B. Then

there is a one-to-one correspondence between 2-connections
on E and Lie-algebra-valued differential forms (Ai, Bi, aij)

satisfying certain equations:

• The holonomy 2-functor holi is specified by an g-

valued 1-form Ai and an h-valued 2-form Bi on Ui,
satisfying the fake flatness condition:

dAi + Ai ∧ Ai + dt(Bi) = 0

• The pseudonatural isomorphism holi
gij

−→holj is spec-
ified by the transition functions gij together with h-
valued 1-forms aij on Ui ∩ Uj, satisfying the equa-

tions:

Ai = gijAjg
−1
ij + gijdg−1

ij − dt(aij)

Bi = ρ(gij)(Bj) + daij + aij ∧ aij + dρ(Ai) ∧ aij

• For gij◦gjk

hijk

−→ gik to be a modification, the functions
hijk must satisfy the equation:

aij + ρ(gij)ajk =

hijk aik h−1
ijk + hijk dρ(Ai) h−1

ijk + hijk dh−1
ijk

Punchline. Except for fake flatness, these weird-looking
equations show up already in Breen and Messing’s defini-

tion of a connection on a nonabelian gerbe! So, 2-bundles
and nonabelian gerbes give closely related approaches to
higher gauge theory.
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Ultimately we expect to find:

G-2-bundles F ↪→ E → B with 2-connection
are classified by smooth 2-anafunctors

P2(B) → G.

And why stop at 2? The basic principle of Galois theory
keeps growing....
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