Lie 2-Algebras and the Geometry of Gerbes

Danny Stevenson

Department of Mathematics
University of California, Riverside email: dstevens@math.ucr.edu

References

Breen \& Messing math. AG/0106083
Baez \& Schreiber hep-th/0412325
Aschieri, Cantini \& Jurco hep-th/0312154

Principal G-bundles

Principal bundles are ubiquitous in geometry and mathematical physics. A principal G-bundle consists of

- a surjective submersion $\pi: P \rightarrow M$
- an action $P \times G \longrightarrow P$ of G on M

such that
- the action is strongly free in the sense that the natural map

$$
P \times G \rightarrow P \times_{M} P
$$

is a diffeomorphism
Classically, connections on P are understood in terms of parallel transport:

Another point of view is to think of a connection on P as an invariant choice of horizontal subspace $H_{u} \subset$ $T_{u} P$ for each $u \in P:$

This horizontal subspace gives a splitting for this exact sequence:

$$
0 \rightarrow V_{u} \rightarrow T_{u} P \xrightarrow{d p} T_{p(u)} M \rightarrow 0
$$

where the vertical subspace V_{u} is the kernel of $d p$.

We would like to think about connections as splittings from a more categorical viewpoint ...

The Atiyah Sequence of a Principal Bundle

Suppose that

is a principal G-bundle. Associated to P is an exact sequence of vector bundles on M :

$$
0 \rightarrow \operatorname{ad}(P) \rightarrow T P / G \rightarrow T M \rightarrow 0
$$

A connection on P is a splitting A of this exact sequence. Associated to this exact sequence is an extension of Lie algebras

$$
0 \rightarrow \Gamma(\operatorname{ad}(P)) \rightarrow \Gamma(T P / G) \rightarrow \Gamma(T M) \rightarrow 0
$$

The curvature F_{A} of A can be understood as a measure of the failure of A to be a homomorphism of Lie algebras:
$F_{A}(X, Y)=[A(X), A(Y)]-A[X, Y] \quad X, Y \in \Gamma(T M)$
F_{A} is skew and bilinear in X, Y and is linear over $C^{\infty}(M)$ so defines an element

$$
F_{A} \in \Omega^{2}(M, \operatorname{ad}(P))
$$

Lie 2-algebras and Crossed Modules

A (strict) Lie 2-algebra is a category \mathbb{L} internal to LieAlg. Thus \mathbb{L} consists of

- a Lie algebra of objects L_{0},
- a Lie algebra of morphisms L_{1},
such that each operation is a homomorphism of Lie algebras.

There is a bijective correspondence between Lie 2-algebras and crossed modules of Lie algebras. A crossed module of Lie algebras consists of a homomorphism

$$
t: L \rightarrow J
$$

of Lie algebras, together with an action $\alpha: J \times L \rightarrow L$ of J on L by derivations, such that

$$
t(\alpha(x)(\xi))=[x, t(\xi)] \quad \text { and } \quad \alpha(t(\xi))(\eta)=[\xi, \eta]
$$

To such a crossed module is associated a Lie 2-algebra with

$$
\begin{aligned}
& \text { objects }=J \\
& \text { morphisms }=J \ltimes L
\end{aligned}
$$

where the semidirect product structure is defined by the action $\alpha: J \rightarrow \operatorname{Der}(L)$.

Lie Schreier Theory

Let J be a Lie algebra. J acts by derivations on itself and so defines a crossed module of Lie algebras

$$
\operatorname{ad}: J \rightarrow \operatorname{Der}(J)
$$

Associated to this crossed module is a Lie 2-algebra $\operatorname{DER}(J)$ as explained above with objects $\operatorname{DER}(J)=\operatorname{Der}(J)$ and morphisms $\operatorname{DER}(J)=\operatorname{Der}(J) \ltimes J$. The bracket on $\operatorname{Der}(J) \ltimes J$ is defined as usual by

$$
[(f, \xi),(g, \eta)]=([f, g],[\xi, \eta]+g(\xi)-f(\eta))
$$

Suppose we are given an arbitrary extension of Lie algebras

$$
0 \rightarrow J \rightarrow K \rightarrow L \rightarrow 0
$$

A splitting σ of this exact sequence induces a linear map

$$
\begin{aligned}
& \sigma: L \rightarrow \operatorname{Der}(J) \\
& \left.x \mapsto \operatorname{ad}_{\sigma(x)}\right|_{J}
\end{aligned}
$$

together with a skew bilinear map

$$
\begin{aligned}
& \omega: L \times L \rightarrow J \\
& \omega(x, y)=[\sigma(x), \sigma(y)]-\sigma[x, y]
\end{aligned}
$$

We would like the pair (σ, ω) to define a homomorphism of semistrict Lie 2-algebras.

So we would like to think of $\omega(x, y)$ as defining a morphism

$$
[\sigma(x), \sigma(y)] \xrightarrow{\omega(x, y)} \sigma[x, y]
$$

We need this morphism to satisfy a coherence law: the diagram

$$
\begin{aligned}
& {[\sigma(x),[\sigma(y), \sigma(z)]] \longrightarrow[[\sigma(x), \sigma(y)], \sigma(z)]+[\sigma(y),[\sigma(x), \sigma(z)]]} \\
& {[\sigma(x), \omega(y, z)]} \\
& {[\sigma(x), \sigma[y, z]]} \\
& {[\sigma[x, y], \sigma(z)]+[\sigma(y), \sigma[x, z]]} \\
& \omega(x,[y, z]) \\
& \omega \omega(x, y), \sigma(z)]+[\sigma(y), \omega(x, z)] \\
& \sigma[x,[y, z]] \longrightarrow \sigma[[x, y], z]+\sigma[y,[x, z]]
\end{aligned}
$$

should commute. This is equivalent to the Bianchi

Identity

$$
d_{A} \omega(x, y, z)=0
$$

for ω. Here d_{A} is the linear map

$$
d_{A}: \wedge^{p} L^{*} \otimes J \rightarrow \wedge^{p+1} L^{*} \otimes J
$$

defined by

$$
\begin{aligned}
& d_{A}(\omega)\left(x_{1}, \ldots, x_{p+1}\right)=\sum_{i=0}^{p+1}(-1)^{i}\left[\sigma\left(x_{i}\right), \omega\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{p+1}\right)\right] \\
& \quad+\sum_{i<j}(-1)^{i+j} \omega\left(\left[x_{i}, x_{j}\right], x_{1}, \ldots, \hat{x}_{i}, \ldots, \hat{x}_{j}, \ldots, x_{p+1}\right)
\end{aligned}
$$

Theorem: There is a bijective correspondence

$$
\operatorname{Ext}(L, J) \simeq \pi_{0}[L, \operatorname{DER}(J)]
$$

where $\operatorname{Ext}(L, J)$ denotes isomorphism classes of split extensions of Lie algebras

$$
0 \rightarrow J \rightarrow K \rightarrow L \rightarrow 0
$$

$\pi_{0}[L, \operatorname{DER}(J)]=$ "nonabelian Lie algebra cohomology".

We have seen:

- A connection on a principal G-bundle is a splitting A of an extension of Lie algebras
- The curvature of the connection measures the failure of A to be a homomorphism of Lie algebras
- The Bianchi Identity for the curvature can be understood as a coherence law.

All of this can be neatly encoded in a homomorphism

$$
\nabla: \Gamma(T M) \rightarrow \operatorname{DER}(\operatorname{ad}(P))
$$

of semistrict Lie 2-algebras.
We want to categorify this picture.

Gerbes and Categorified Bundles

Suppose that $\mathbb{G}=\left(G_{0}, G_{1}\right)$ is a Lie 2-group. For example $\mathbb{G}=\operatorname{AUT}(G)$ for a compact Lie group G. A principal \mathbb{G}-bundle on a smooth groupoid \mathbb{M} consists of

- a surjective submersion $\pi: \mathbb{P} \rightarrow \mathbb{M}$,
- an action

of \mathbb{G} on \mathbb{M},
such that
- the natural functor

$$
\mathbb{P} \times \mathbb{G} \rightarrow \mathbb{P} \times_{\mathbb{M}} \mathbb{P}
$$

is a diffeomorphism
Note that $P_{0} \rightarrow M_{0}$ and $P_{1} \rightarrow M_{1}$ are principal G_{0} and G_{1} bundles respectively. \mathbb{P} is an example of a category internal to the category PrinBund of principal bundles. Principal \mathbb{G}-bundles are closely related to gerbes.

Examples

If $\mathbb{M}=X \times_{M} X \rightrightarrows X$ is the groupoid associated to a surjective submersion $\pi: X \rightarrow M$ we say that \mathbb{P} is a \mathbb{G}-gerbe on M.

Example 1: Suppose that $P \rightarrow M$ is a principal K bundle where K forms part of a central extension

$$
1 \rightarrow S^{1} \rightarrow \hat{K} \rightarrow K \rightarrow 1
$$

Let $\mathbb{M}=P \times K \rightrightarrows P$ and $\mathbb{P}=P \times \hat{K} \rightrightarrows P$ be transformation groupoids. Then $\mathbb{P} \rightarrow \mathbb{M}$ is a gerbe on M for the 2-group $S^{1}[1]$ with one object and morphisms S^{1}.

Example 2: Let G be a compact, simple and simply connected Lie group, and take $K=\Omega G, P=P_{0} G$. Then

$$
\widehat{\mathbb{G}}=P_{0} G \times \widehat{\Omega G} \rightrightarrows P_{0} G
$$

is a gerbe on G - this is the string 2-group.

Example 3: Suppose that M is a 2 -connected spin manifold such that a certain characteristic class $c \in H^{4}(M ; \mathbb{Z})$, twice which is p_{1}, vanishes. Then there is a gerbe \mathbb{P} on M for the string 2-group $\hat{\mathbb{G}}$ - the string gerbe.

Local description of G-gerbes with connection

If \mathbb{M} is the groupoid $\sqcup U_{i j} \rightrightarrows \sqcup U_{i}$ associated to an open cover of M, then an $\operatorname{AUT}(G)$-gerbe with connection and curving can be described locally by the following data

$$
\left(\lambda_{i j}, g_{i j k}, \gamma_{i j k}, m_{i j}, \nu_{i}, \delta_{i j}, B_{i}, \omega_{i}\right)
$$

where $g_{i j k}: U_{i j k} \rightarrow G, \lambda_{i j}: U_{i j} \rightarrow \operatorname{Aut}(G)$ and the remaining fields are described in the following table:

	1-forms	2 -forms	3 -forms
\mathfrak{g}-valued	$\gamma_{i j k}$	$\delta_{i j}, B_{i}$	ω_{i}
$\operatorname{Der}(\mathfrak{g})$-valued	m_{i}	ν_{i}	

The 2 -form ν_{i} is called the 'fake curvature'; the \mathfrak{g} valued 3 -form ω_{i} is called the '3-curvature'. These fields are required to satisfy the following equations:

$$
\begin{aligned}
& \lambda_{i j}\left(g_{j k l}\right) g_{i j l}=g_{i j k} g_{i k l} \\
& \lambda_{i j} \lambda_{j k}=\operatorname{Ad}_{g_{i j k}} \lambda_{i k}
\end{aligned}
$$

\ldots plus 10 other even more complicated ones
One of these equations is the Higher Bianchi Identity which says that

$$
d \omega_{i}+m_{i}\left(\omega_{i}\right)=\nu_{i}\left(B_{i}\right)
$$

Is there a more conceptual way to understand this??

Connections on Gerbes

Suppose that $\mathbb{P} \rightarrow \mathbb{M}$ is a gerbe for the 2 -group \mathbb{G}. The Atiyah sequences for the principal bundles P_{0} and P_{1} combine to form a diagram of groupoids and functors between them

We can think of this as an analogue of the Atiyah sequence:

$$
0 \rightarrow \operatorname{ad}(\mathbb{P}) \rightarrow T \mathbb{P} / \mathbb{G} \rightarrow T \mathbb{M} \rightarrow 0
$$

The individual groupoids in this sequence one can think of as 2 -vector bundles on \mathbb{M}, i.e groupoids internal to VectBund.

A connection on \mathbb{P} is a splitting A of this exact sequence, i.e a smooth functor $A: T \mathbb{M} \rightarrow T \mathbb{P} / \mathbb{G}$ such that $p \circ A=1$.

Associated to the exact sequence above we get an exact sequence of Lie 2-algebras.

$$
0 \rightarrow \Gamma(\operatorname{ad}(\mathbb{P})) \rightarrow \Gamma(T \mathbb{P} / \mathbb{G}) \rightarrow \Gamma(T M) \rightarrow 0
$$

Here if $p: \mathbb{E} \rightarrow \mathbb{M}$ is a 2 -vector bundle, $\Gamma(\mathbb{E})$ denotes the functors $s: \mathbb{M} \rightarrow \mathbb{E}$ such that $p \circ s=1$ and natural transformations between these.

The Lie 3-algebra of Derivations

Let \mathbb{L} be a strict Lie 2-algebra. A (strict) derivation of \mathbb{L} is a linear functor $f: \mathbb{L} \rightarrow \mathbb{L}$ such that

$$
\begin{aligned}
& f_{0}[x, y]=\left[f_{0}(x), y\right]+\left[x, f_{0}(y)\right] \\
& f_{1}[u, v]=\left[f_{1}(u), v\right]+\left[u, f_{1}(v)\right]
\end{aligned}
$$

for all objects x, y in L_{0} and all morphisms u, v in L_{1}. A morphism of derivations is a linear natural transformation $\alpha: f \Rightarrow g$ such that

$$
\alpha[x, y]=[\alpha(x), y]+[x, \alpha(y)]
$$

The derivations of \mathbb{L} and morphisms between them form a 2 -vector space $\operatorname{Der}(\mathbb{L})$. We can equip $\operatorname{Der}(\mathbb{L})$ with a bracket functor $[]:, \mathbb{L} \times \mathbb{L} \rightarrow \mathbb{L}$ by defining

$$
\begin{aligned}
& {\left[f, f^{\prime}\right]=f \circ f^{\prime}-f^{\prime} \circ f} \\
& {[\alpha, \beta]=f_{1}^{\prime} \beta+\alpha g_{0}-g_{1}^{\prime} \alpha-\beta f_{0}}
\end{aligned}
$$

[,] is skew, bilinear and satisfies the Jacobi identity on the nose. $\operatorname{Der}(\mathbb{L})$ is a strict Lie 2-algebra. Define a homomorphism

$$
\begin{aligned}
\operatorname{ad}: \mathbb{L} & \rightarrow \operatorname{Der}(\mathbb{L}) \\
x & \mapsto \operatorname{ad}(x) \\
& u \mapsto \operatorname{ad}(u)
\end{aligned}
$$

where $\operatorname{ad}(x)$ is the derivation of \mathbb{L} defined on objects by $\operatorname{ad}(x)(y)=[x, y]$ and similarly for morphisms.

The homomorphism ad: $\mathbb{L} \rightarrow \operatorname{Der}(\mathbb{L})$ is an example of a (strict) crossed module of Lie 2-algebras.

A crossed module of Lie 2-algebras consists of a homomorphism $t: \mathbb{L} \rightarrow \mathbb{J}$ together with an action $\alpha: \mathbb{J} \times \mathbb{L} \rightarrow$ \mathbb{L} of \mathbb{J} on \mathbb{L} by derivations such that the following diagrams commute:

If we think of \mathbb{L} and \mathbb{J} themselves as crossed modules $d: L_{1} \rightarrow L_{0}$ and $\partial: J_{1} \rightarrow J_{0}$ then we have a commutative square

in which each arrow, and each composite arrow, is a crossed module, together with some extra conditions.

Given such a crossed module $t: \mathbb{L} \rightarrow \mathbb{J}$ we can form a J_{0}-equivariant complex of Lie algebras

$$
L_{1} \xrightarrow{\left(t_{1}, d\right)} J_{1} \ltimes L_{0} \xrightarrow{t_{0}-\partial} J_{0}
$$

where each arrow is a crossed module.

Here the bracket on $J_{1} \ltimes L_{0}$ is defined by

$$
\begin{aligned}
& {\left[\left(x_{1}, \xi_{1}\right),\left(x_{2}, \xi_{2}\right)\right]=\left(\left[x_{1}, x_{2}\right],-\left[\xi_{1}, \xi_{2}\right]+\right.} \\
& \left.\quad \alpha\left(\partial\left(x_{1}\right)\right)\left(\xi_{2}\right)-\alpha\left(\partial\left(x_{0}\right)\right)\left(\xi_{1}\right)\right)
\end{aligned}
$$

We associate a Lie 3-algebra, i.e a 2 -category in LieAlg, to this complex with

$$
\begin{aligned}
& \text { objects }=J_{0} \\
& \text { 1-morphisms }=J_{0} \ltimes\left(J_{1} \ltimes L_{0}\right) \\
& \text { 2-morphisms }=J_{0} \ltimes\left(\left(J_{1} \ltimes L_{0}\right) \ltimes L_{1}\right)
\end{aligned}
$$

We denote by $\operatorname{DER}(\mathbb{L})$ the Lie 3-algebra associated in this way to the crossed module ad: $\mathbb{L} \rightarrow \operatorname{Der}(\mathbb{L})$.

Towards Higher Lie Schreier Theory

Suppose that

$$
0 \rightarrow \mathbb{J} \rightarrow \mathbb{K} \rightarrow \underline{L} \rightarrow 0
$$

is an exact sequence of Lie 2-algebras, where L is an ordinary Lie algebra and \underline{L} denotes the corresponding discrete Lie 2-algebra.

Suppose that $A: \underline{L} \rightarrow \mathbb{K}$ is a splitting of this exact sequence. In analogy with the previous discussion we measure the failure of A to be a homomorphism of Lie 2 -algebras. In general there exist morphisms in \mathbb{J}

$$
[A(x), A(y)] \xrightarrow{B(x, y)} A[x, y]+\nu(x, y)
$$

natural, skew, and bilinear in x and y, where ν is a skew bilinear functor

$$
\nu: \underline{L} \times \underline{L} \rightarrow \mathbb{J} .
$$

This is the origin of the fake curvature. Under the homomorphism ad: $\mathbb{J} \rightarrow \operatorname{Der}(\mathbb{J})$ the morphisms $B(x, y)$ become morphisms of derivations

$$
\left[\operatorname{ad}_{A(x)}, \operatorname{ad}_{A(y)}\right] \xrightarrow{\operatorname{ad}_{B(x, y)}} \operatorname{ad}_{A[x, y]}+\operatorname{ad}_{\nu(x, y)}
$$

If we denote the derivation $\operatorname{ad}_{A(x)}$ of \mathbb{J} by ∇_{x} then we can combine $\operatorname{ad}_{B(x, y)}$ and $\nu(x, y)$ into a 1 -morphism in DER(J):

$$
\left[\nabla_{x}, \nabla_{y}\right] \xrightarrow{\left\{\operatorname{ad}_{B(x, y)}, \nu(x, y)\right\}} \nabla_{[x, y]}
$$

Define a bilinear functor

$$
d_{A}: \bigwedge^{p} \underline{L}^{*} \otimes \mathbb{J} \rightarrow \bigwedge^{p+1} \underline{L}^{*} \otimes \mathbb{J}
$$

using a similar formula to that above. We find that there is a skew, trilinear morpism $\omega(x, y, z)$, natural in x, y and z, such that

$$
\begin{aligned}
& d_{A} \nu(x, y, z)=t \omega(x, y, z) \\
& \omega(x, y, z)=d_{A} B(x, y, z)
\end{aligned}
$$

ω satisfies a coherence law - the 'Higher Bianchi Identity' - which can be interpreted as the equation

$$
d_{A} \omega=[\nu, B]
$$

This data can be neatly encoded as a homomorphism of semistrict Lie 3-algebras

$$
\nabla: L \rightarrow \operatorname{DER}(\mathbb{J})
$$

We have

- a homomorphism $L \rightarrow \operatorname{DER}(\mathbb{J})$

$$
L \ni x \mapsto \nabla_{x}
$$

where ∇_{x} is the derivation $\operatorname{ad}_{A(x)}$.

- a skew, bilinear natural transformation

$$
f_{x, y}:\left[\nabla_{x}, \nabla_{y}\right] \Rightarrow \nabla_{[x, y]}
$$

defined by

$$
f_{x, y}=\{B(x, y), \nu(x, y)\}
$$

- a skew, trilinear modification ω as in the diagram

$$
\begin{aligned}
& {\left[\nabla_{x},\left[\nabla_{y}, \nabla_{z}\right]\right] \longrightarrow\left[\left[\nabla_{x}, \nabla_{y}\right], \nabla_{z}\right]+\left[\nabla_{y},\left[\nabla_{x}, \nabla_{z}\right]\right]} \\
& \begin{aligned}
& {\left[\nabla_{x}, f_{y, z]} \mid\right.} \left\lvert\, \begin{array}{l}
{\left[f_{x, y}, \nabla_{z}\right]+\left[\nabla_{y}, f_{x, z}\right]} \\
{\left[\nabla_{x}, \nabla_{[y, z]}\right]}
\end{array}\right. \\
& {\left[\nabla_{[x, y]}, \nabla_{z}\right]+\left[\nabla_{y,}, \nabla_{[x, z]}\right] }
\end{aligned}
\end{aligned}
$$

- ω is required to satisfy a coherence law, making a certain diagram commute

