Lie 2-Algebras and the Geometry of Gerbes

Danny Stevenson

Department of Mathematics University of California, Riverside email: dstevens@math.ucr.edu

References

Breen & Messing math.AG/0106083 Baez & Schreiber hep-th/0412325 Aschieri, Cantini & Jurco hep-th/0312154

Principal G-bundles

Principal bundles are ubiquitous in geometry and mathematical physics. A **principal** G-bundle consists of

• a surjective submersion $\pi \colon P \to M$

• an action
$$P \times G \xrightarrow{} P$$
 of G on M

such that

• the action is strongly free in the sense that the natural map

$$P \times G \to P \times_M P$$

is a diffeomorphism

Classically, **connections** on P are understood in terms of **parallel transport**:

Another point of view is to think of a connection on Pas an invariant choice of **horizontal subspace** $H_u \subset T_u P$ for each $u \in P$:

This horizontal subspace gives a **splitting** for this exact sequence:

$$0 \to V_u \to T_u P \xrightarrow{dp} T_{p(u)} M \to 0$$

where the **vertical subspace** V_u is the kernel of dp.

We would like to think about connections as splittings from a more **categorical** viewpoint . . .

The Atiyah Sequence of a Principal Bundle

Suppose that

$$\begin{array}{c} G \longrightarrow P \\ \downarrow \\ M \end{array}$$

is a principal G-bundle. Associated to P is an **exact** sequence of vector bundles on M:

 $0 \to \mathrm{ad}(P) \to TP/G \to TM \to 0$

A connection on P is a splitting A of this exact sequence. Associated to this exact sequence is an **extension** of Lie algebras

$$0 \to \Gamma(\mathrm{ad}(P)) \to \Gamma(TP/G) \to \Gamma(TM) \to 0$$

The **curvature** F_A of A can be understood as a measure of the failure of A to be a **homomorphism** of Lie algebras:

$$F_A(X,Y) = [A(X), A(Y)] - A[X,Y] \qquad X, Y \in \Gamma(TM)$$

 F_A is skew and bilinear in X, Y and is linear over $C^{\infty}(M)$ so defines an element

$$F_A \in \Omega^2(M, \operatorname{ad}(P))$$

Lie 2-algebras and Crossed Modules

A (strict) Lie 2-algebra is a category \mathbb{L} internal to LieAlg. Thus \mathbb{L} consists of

- a *Lie algebra* of objects L_0 ,
- a *Lie algebra* of morphisms L_1 ,

such that each operation is a homomorphism of Lie algebras.

There is a bijective correspondence between Lie 2-algebras and **crossed modules** of Lie algebras. A crossed module of Lie algebras consists of a homomorphism

 $t \colon L \to J$

of Lie algebras, together with an action $\alpha \colon J \times L \to L$ of J on L by derivations, such that

 $t(\alpha(x)(\xi)) = [x, t(\xi)] \qquad \text{and} \qquad \alpha(t(\xi))(\eta) = [\xi, \eta]$

To such a crossed module is associated a Lie 2-algebra with

objects
$$= J$$

morphisms $= J \ltimes L$

where the semidirect product structure is defined by the action $\alpha \colon J \to \text{Der}(L)$.

Lie Schreier Theory

Let J be a Lie algebra. J acts by derivations on itself and so defines a **crossed module** of Lie algebras

ad:
$$J \to \text{Der}(J)$$

Associated to this crossed module is a **Lie** 2-algebra DER(J) as explained above with objects DER(J) = Der(J) and morphisms DER(J) = Der(J) $\ltimes J$. The bracket on Der(J) $\ltimes J$ is defined as usual by

$$[(f,\xi),(g,\eta)] = ([f,g],[\xi,\eta] + g(\xi) - f(\eta))$$

Suppose we are given an arbitrary extension of Lie algebras

 $0 \to J \to K \to L \to 0$

A splitting σ of this exact sequence induces a linear map

$$\sigma \colon L \to \operatorname{Der}(J)$$
$$x \mapsto \operatorname{ad}_{\sigma(x)}|_J$$

together with a skew bilinear map

$$\begin{split} &\omega\colon L\times L\to J\\ &\omega(x,y)=[\sigma(x),\sigma(y)]-\sigma[x,y] \end{split}$$

We would like the pair (σ, ω) to define a **homomorphism** of semistrict Lie 2-algebras.

So we would like to think of $\omega(x,y)$ as defining a morphism

$$[\sigma(x), \sigma(y)] \stackrel{\omega(x,y)}{\longrightarrow} \sigma[x,y]$$

We need this morphism to satisfy a coherence law: the diagram

$$\begin{split} \left[\sigma(x), \left[\sigma(y), \sigma(z) \right] \right] & \stackrel{=}{\longrightarrow} \left[\left[\sigma(x), \sigma(y) \right], \sigma(z) \right] + \left[\sigma(y), \left[\sigma(x), \sigma(z) \right] \right] \\ \left[\sigma(x), \omega(y, z) \right] & \left[\omega(x, y), \sigma(z) \right] + \left[\sigma(y), \sigma(z, z) \right] \\ \left[\sigma(x), \sigma[y, z] \right] & \left[\sigma[x, y], \sigma(z) \right] + \left[\sigma(y), \sigma[x, z] \right] \\ \left[\omega(x, y), z) + \omega(y, [x, z]) \right] & \left[\sigma[x, y], z \right] + \sigma[y, [x, z]] \\ \left[\sigma[x, y], z \right] & \left[\sigma[x, y], z \right] + \sigma[y, [x, z]] \\ \\ \text{should commute. This is equivalent to the Bianchi} \\ \end{split}$$

Identity

$$d_A\omega(x,y,z) = 0$$

for ω . Here d_A is the linear map

$$d_A \colon \wedge^p L^* \otimes J \to \wedge^{p+1} L^* \otimes J$$

defined by

$$d_A(\omega)(x_1, \dots, x_{p+1}) = \sum_{i=0}^{p+1} (-1)^i [\sigma(x_i), \omega(x_1, \dots, \hat{x}_i, \dots, x_{p+1})] + \sum_{i < j} (-1)^{i+j} \omega([x_i, x_j], x_1, \dots, \hat{x}_i, \dots, \hat{x}_j, \dots, x_{p+1})$$

Theorem: There is a bijective correspondence

 $\operatorname{Ext}(L, J) \simeq \pi_0[L, \operatorname{DER}(J)]$

where $\operatorname{Ext}(L,J)$ denotes isomorphism classes of split extensions of Lie algebras

 $0 \to J \to K \to L \to 0$

 $\pi_0[L, \text{DER}(J)] =$ "nonabelian Lie algebra cohomology".

We have seen:

- A connection on a principal *G*-bundle is a **splitting** *A* of an extension of Lie algebras
- The curvature of the connection measures the **failure** of A to be a homomorphism of Lie algebras
- The Bianchi Identity for the curvature can be understood as a **coherence law**.

All of this can be neatly encoded in a homomorphism

 $\nabla \colon \Gamma(TM) \to \mathrm{DER}(\mathrm{ad}(P))$

of semistrict Lie 2-algebras.

We want to **categorify** this picture.

Gerbes and Categorified Bundles

Suppose that $\mathbb{G} = (G_0, G_1)$ is a Lie 2-group. For example $\mathbb{G} = \operatorname{AUT}(G)$ for a compact Lie group G. A **principal** \mathbb{G} -**bundle** on a smooth groupoid \mathbb{M} consists of

- a surjective submersion $\pi \colon \mathbb{P} \to \mathbb{M}$,
- an **action**

of \mathbb{G} on \mathbb{M} ,

such that

• the natural functor

$$\mathbb{P} \times \mathbb{G} \to \mathbb{P} \times_{\mathbb{M}} \mathbb{P}$$

is a **diffeomorphism**

Note that $P_0 \to M_0$ and $P_1 \to M_1$ are principal G_0 and G_1 bundles respectively. \mathbb{P} is an example of a category internal to the category **PrinBund** of principal bundles. Principal \mathbb{G} -bundles are closely related to **gerbes**.

Examples

If $\mathbb{M} = X \times_M X \Longrightarrow X$ is the groupoid associated to a surjective submersion $\pi \colon X \to M$ we say that \mathbb{P} is a \mathbb{G} -gerbe on M.

Example 1: Suppose that $P \to M$ is a principal Kbundle where K forms part of a central extension

$$1 \to S^1 \to \hat{K} \to K \to 1$$

Let $\mathbb{M} = P \times K \rightrightarrows P$ and $\mathbb{P} = P \times \hat{K} \rightrightarrows P$ be transformation groupoids. Then $\mathbb{P} \to \mathbb{M}$ is a gerbe on M for the 2-group $S^1[1]$ with one object and morphisms S^1 .

Example 2: Let G be a compact, simple and simply connected Lie group, and take $K = \Omega G$, $P = P_0 G$. Then

$$\widehat{\mathbb{G}} = P_0 G \times \widehat{\Omega G} \rightrightarrows P_0 G$$

is a gerbe on G — this is the **string** 2-group.

Example 3: Suppose that M is a 2-connected spin manifold such that a certain characteristic class $c \in H^4(M; \mathbb{Z})$, twice which is p_1 , vanishes. Then there is a gerbe \mathbb{P} on M for the string 2-group $\hat{\mathbb{G}}$ — the **string gerbe**.

Local description of G-gerbes with connection

If \mathbb{M} is the groupoid $\sqcup U_{ij} \rightrightarrows \sqcup U_i$ associated to an open cover of M, then an $\operatorname{AUT}(G)$ -gerbe with connection and curving can be described locally by the following data

 $(\lambda_{ij}, g_{ijk}, \gamma_{ijk}, m_{ij}, \nu_i, \delta_{ij}, B_i, \omega_i)$

where $g_{ijk}: U_{ijk} \to G$, $\lambda_{ij}: U_{ij} \to \operatorname{Aut}(G)$ and the remaining fields are described in the following table:

	1-forms	2-forms	3-forms
$\mathfrak{g} ext{-valued}$	γ_{ijk}	δ_{ij},B_i	ω_i
$Der(\mathfrak{g})$ -valued	\overline{m}_i	$ u_i$	

The 2-form ν_i is called the '**fake curvature**'; the **g**-valued 3-form ω_i is called the '**3-curvature**'. These fields are required to satisfy the following equations:

 $\lambda_{ij}(g_{jkl})g_{ijl} = g_{ijk}g_{ikl}$ $\lambda_{ij}\lambda_{jk} = \operatorname{Ad}_{g_{ijk}}\lambda_{ik}$

... plus 10 other even more complicated ones

One of these equations is the **Higher Bianchi Identity** which says that

$$d\omega_i + m_i(\omega_i) = \nu_i(B_i)$$

Is there a more conceptual way to understand this??

Connections on Gerbes

Suppose that $\mathbb{P} \to \mathbb{M}$ is a gerbe for the 2-group \mathbb{G} . The Atiyah sequences for the principal bundles P_0 and P_1 combine to form a diagram of groupoids and functors between them

$$\begin{array}{c} \operatorname{ad}(P_1) \longrightarrow TP_1/G_1 \longrightarrow TM_1 \\ \downarrow \downarrow \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow \downarrow \\ \operatorname{ad}(P_0) \longrightarrow TP_0/G_0 \longrightarrow TM_0 \end{array}$$

We can think of this as an analogue of the Atiyah sequence:

 $0 \to \mathrm{ad}(\mathbb{P}) \to T\mathbb{P}/\mathbb{G} \to T\mathbb{M} \to 0$

The individual groupoids in this sequence one can think of as 2-vector bundles on M, i.e groupoids internal to **VectBund**.

A connection on \mathbb{P} is a splitting A of this exact sequence, i.e a smooth functor $A: T\mathbb{M} \to T\mathbb{P}/\mathbb{G}$ such that $p \circ A = 1$.

Associated to the exact sequence above we get an **exact sequence** of Lie 2-algebras.

$$0 \to \Gamma(\mathrm{ad}(\mathbb{P})) \to \Gamma(T\mathbb{P}/\mathbb{G}) \to \Gamma(TM) \to 0$$

Here if $p: \mathbb{E} \to \mathbb{M}$ is a 2-vector bundle, $\Gamma(\mathbb{E})$ denotes the functors $s: \mathbb{M} \to \mathbb{E}$ such that $p \circ s = 1$ and natural transformations between these.

The Lie 3-algebra of Derivations

Let \mathbb{L} be a strict Lie 2-algebra. A (strict) **derivation** of \mathbb{L} is a linear functor $f: \mathbb{L} \to \mathbb{L}$ such that

$$f_0[x, y] = [f_0(x), y] + [x, f_0(y)]$$

$$f_1[u, v] = [f_1(u), v] + [u, f_1(v)]$$

for all objects x, y in L_0 and all morphisms u, v in L_1 . A **morphism** of derivations is a linear natural transformation $\alpha \colon f \Rightarrow g$ such that

$$\alpha[x,y] = [\alpha(x),y] + [x,\alpha(y)]$$

The derivations of \mathbb{L} and morphisms between them form a 2-vector space $\text{Der}(\mathbb{L})$. We can equip $\text{Der}(\mathbb{L})$ with a **bracket** functor $[,]: \mathbb{L} \times \mathbb{L} \to \mathbb{L}$ by defining

$$[f, f'] = f \circ f' - f' \circ f$$
$$[\alpha, \beta] = f'_1\beta + \alpha g_0 - g'_1\alpha - \beta f_0$$

 $[\ ,\]$ is skew, bilinear and satisfies the Jacobi identity on the nose. Der(L) is a strict Lie 2-algebra. Define a homomorphism

$$ad: \mathbb{L} \to Der(\mathbb{L})$$
$$x \mapsto ad(x)$$
$$u \mapsto ad(u)$$

where ad(x) is the derivation of \mathbb{L} defined on objects by ad(x)(y) = [x, y] and similarly for morphisms.

The homomorphism ad: $\mathbb{L} \to \text{Der}(\mathbb{L})$ is an example of a (strict) *crossed module* of Lie 2-algebras.

A **crossed module** of Lie 2-algebras consists of a homomorphism $t: \mathbb{L} \to \mathbb{J}$ together with an action $\alpha: \mathbb{J} \times \mathbb{L} \to \mathbb{L}$ of \mathbb{J} on \mathbb{L} by **derivations** such that the following diagrams commute:

If we think of \mathbb{L} and \mathbb{J} themselves as crossed modules $d: L_1 \to L_0$ and $\partial: J_1 \to J_0$ then we have a commutative square

$$\begin{array}{c} L_1 \xrightarrow{t_1} J_1 \\ \downarrow d & \downarrow \partial \\ L_0 \xrightarrow{t_0} J_0 \end{array}$$

in which each arrow, and each composite arrow, is a crossed module, together with some extra conditions.

Given such a crossed module $t: \mathbb{L} \to \mathbb{J}$ we can form a J_0 -equivariant complex of Lie algebras

$$L_1 \xrightarrow{(t_1,d)} J_1 \ltimes L_0 \xrightarrow{t_0 - \partial} J_0$$

where each arrow is a crossed module.

Here the bracket on $J_1 \ltimes L_0$ is defined by

$$\begin{split} [(x_1,\xi_1),(x_2,\xi_2)] &= ([x_1,x_2],-[\xi_1,\xi_2] + \\ &\alpha(\partial(x_1))(\xi_2) - \alpha(\partial(x_0))(\xi_1)) \end{split}$$

We associate a **Lie 3-algebra**, i.e a 2-category in **LieAlg**, to this complex with

objects =
$$J_0$$

1-morphisms = $J_0 \ltimes (J_1 \ltimes L_0)$
2-morphisms = $J_0 \ltimes ((J_1 \ltimes L_0) \ltimes L_1)$

We denote by $\text{DER}(\mathbb{L})$ the Lie 3-algebra associated in this way to the crossed module $\text{ad} \colon \mathbb{L} \to \text{Der}(\mathbb{L})$.

Towards Higher Lie Schreier Theory

Suppose that

 $0 \to \mathbb{J} \to \mathbb{K} \to \underline{L} \to 0$

is an **exact sequence** of Lie 2-algebras, where L is an ordinary Lie algebra and \underline{L} denotes the corresponding discrete Lie 2-algebra.

Suppose that $A: \underline{L} \to \mathbb{K}$ is a splitting of this exact sequence. In analogy with the previous discussion we measure the failure of A to be a homomorphism of Lie 2-algebras. In general there exist morphisms in \mathbb{J}

$$[A(x), A(y)] \xrightarrow{B(x,y)} A[x,y] + \nu(x,y)$$

natural, skew, and bilinear in x and y, where ν is a skew bilinear functor

$$\nu \colon \underline{L} \times \underline{L} \to \mathbb{J}.$$

This is the origin of the **fake curvature**. Under the homomorphism $\operatorname{ad}: \mathbb{J} \to \operatorname{Der}(\mathbb{J})$ the morphisms B(x, y) become morphisms of derivations

$$[\mathrm{ad}_{A(x)}, \mathrm{ad}_{A(y)}] \xrightarrow{\mathrm{ad}_{B(x,y)}} \mathrm{ad}_{A[x,y]} + \mathrm{ad}_{\nu(x,y)}$$

If we denote the derivation $\operatorname{ad}_{A(x)}$ of \mathbb{J} by ∇_x then we can combine $\operatorname{ad}_{B(x,y)}$ and $\nu(x,y)$ into a 1-morphism in $\operatorname{DER}(\mathbb{J})$:

$$\left[\nabla_x, \nabla_y\right] \stackrel{\{\mathrm{ad}_{B(x,y)}, \nu(x,y)\}}{\longrightarrow} \nabla_{[x,y]}$$

Define a bilinear functor

$$d_A\colon \bigwedge^p \underline{L}^* \otimes \mathbb{J} \to \bigwedge^{p+1} \underline{L}^* \otimes \mathbb{J}$$

using a similar formula to that above. We find that there is a skew, trilinear morphism $\omega(x, y, z)$, natural in x, yand z, such that

$$d_A \nu(x, y, z) = t \,\omega(x, y, z)$$
$$\omega(x, y, z) = d_A B(x, y, z)$$

 ω satisfies a coherence law — the '**Higher Bianchi Identity**' — which can be interpreted as the equation

$$d_A\,\omega = [\nu, B]$$

This data can be neatly encoded as a homomorphism of semistrict Lie 3-algebras

$$\nabla \colon L \to \mathrm{DER}(\mathbb{J})$$

We have

• a homomorphism $L \to \text{DER}(\mathbb{J})$

۲

$$L \ni x \mapsto \nabla_x$$

where ∇_x is the derivation $\operatorname{ad}_{A(x)}$.

• a skew, bilinear natural transformation

$$f_{x,y} \colon [\nabla_x, \nabla_y] \Rightarrow \nabla_{[x,y]}$$

defined by

$$f_{x,y} = \{B(x,y), \nu(x,y)\}$$

- a skew, trilinear modification ω as in the diagram
 - $$\begin{split} \begin{bmatrix} \nabla_{x}, [\nabla_{y}, \nabla_{z}] \end{bmatrix} & \stackrel{=}{\longrightarrow} \begin{bmatrix} [\nabla_{x}, \nabla_{y}], \nabla_{z}] + [\nabla_{y}, [\nabla_{x}, \nabla_{z}]] \\ & \downarrow [f_{x,y}, \nabla_{z}] + [\nabla_{y}, f_{x,z}] \\ & \downarrow [f_{x,y}, \nabla_{z}] + [\nabla_{y}, \nabla_{x,z}] \end{bmatrix} \\ \begin{bmatrix} \nabla_{x}, \nabla_{[y,z]} \end{bmatrix} & \begin{bmatrix} \nabla_{[x,y]}, \nabla_{z} \end{bmatrix} + \begin{bmatrix} \nabla_{y}, \nabla_{[x,z]} \end{bmatrix} \\ & \downarrow f_{[x,y],z} + f_{y,[x,z]} \\ & \downarrow f_{[x,y],z} + f_{y,[x,z]} \end{bmatrix} \\ & \nabla_{[x,[y,z]]} \xrightarrow{=} \nabla_{[[x,y],z]} + \nabla_{[y,[x,z]]} \end{split}$$
- ω is required to satisfy a coherence law, making a certain diagram commute