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For slides go to http://tinyurl.com/networks-broadcom


http://tinyurl.com/networks-broadcom

In many areas of science and engineering, people use diagrams of
networks, with boxes connected by wires:
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We need a good mathematical theory of these.


http://math.ucr.edu/home/baez/networks/networks_1.html
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/

Categories must be part of the solution. This became clear in the
1980s, at the interface of knot theory and quantum physics:
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Part (b) is left for the reader.


http://www.worldscientific.com/worldscibooks/10.1142/8338

Categories are great for describing processes. A process with input
x and output y is a morphism F: x — y, and we can draw it like
this:



We can do one process after another if the output of the first
equals the input of the second:

Here we are composing morphisms F: x — y and G: y — z to get
a morphism GF: x — z.



In a monoidal category, we can also do processes ‘in parallel’:

Here we are tensoring F: x — y and G: x’ — y’ to get a
morphism FR G: x@x' =y Ry’

Composition and tensoring must obey some laws, which all look
obvious when drawn as diagrams.


http://arxiv.org/abs/0903.0340

In a symmetric monoidal category we also have morphisms
By,y: x®y — y ® x called braidings:
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These let us draw diagrams where wires cross. They are required
to obey some obvious-looking laws, such as the one above.


http://arxiv.org/abs/0903.0340

In quantum field theory, ‘Feynman diagrams’ describe interactions

between elementary particles:

proton

antiproton

In the 1990s it became clear that any Feynman diagram theory is a

symmetric monoidal category.



But why should quantum field theorists have all the fun?

In fact, engineering is full of diagrams that are worthy of
mathematical study. That's what I've been looking at lately.



Each style of diagram with quantities flowing along ‘wires’
corresponds to some symmetric monoidal category C.

Each way of translating between styles of diagrams should then

correspond to some symmetric monoidal functor ®: C — D. A

‘functor’ is a map between categories, sending morphisms of the
first to morphisms of the second, preserving composition:

O(GF) = d(G) d(F)
A ‘monoidal functor’ also preserves tensoring:
O(F® G)=d(F) 2 P(G)
and the braiding.

So, instead of just studying one diagram language, we can study
many, and how they're related.



Circuit diagrams let us specify relations between voltages and
currents on a network of wires:
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http://www.eeweb.com/blog/extreme_circuits/10w-audio-amplifier-with-bass-boost

However, circuit diagrams are good for much more, thanks to
these analogies:

H displacement flow momentum effort
q q P P
Electronics charge current flux linkage voltage
Mechanics (translation) position velocity momentum force
Mechanics (rotation) angle angular velocity angular momentum torque
Hydraulics volume flow pressure momentum pressure
Thermodynamics entropy entropy flow temperature momentum temperature
Chemistry moles molar flow chemical momentum chemical potential

Each analogy between subjects is really a symmetric monoidal
functor!

But these particular functors consist merely of renaming quantities:

they're important but not mathematically deep.

More interesting is the symmetric monoidal functor from circuit
diagrams to ‘signal-flow graphs'.



Control theorists use signal-flow graphs to describe processes
where signals flow through a system and interact.

For example, an upside-down pendulum on a cart:
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has the following signal-flow graph...



http://math.ucr.edu/home/baez/networks_oxford/#I




The idea is that each ‘wire’ in a signal-flow graph carries a signal,
a smooth real-valued function of time:

f-R—R

We can multiply a signal by a constant and get a new signal:

f

cf



We can integrate a signal:



We can use Laplace transforms to write signals as linear
combinations of exponentials:

f(t) =e " for some s >0

Then we can define .
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This lets us think of integration as a special case of scalar
multiplication! We extend our ‘scalars’ from R to
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Signal-flow graphs are morphisms in a symmetric monoidal
category SigFlow. We build general signal-flow graphs by
composing and tensoring certain building blocks, called
generators:

1. For each ¢ € k we can multiply signals by c:

f

cf



2. We can add signals:

f+g



3. We can duplicate a signal:



4. We can delete a signal:



5. We have the zero signal:



From these generators:

YA

together with composition, tensoring and the braiding, we can
build signal-flow graphs that describe any linear map F: k™ — k".



However, the generators obey some unexpected relations:
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Lucikly, in our paper Categories in Control, Jason Erbele and |
found a finite list of relations that imply all the rest.

Apart from those built into the definition of a symmetric monoidal
category, they are these:


https://johncarlosbaez.wordpress.com/2015/04/23/categories-in-control-2/
http://arxiv.org/abs/0903.0340
http://arxiv.org/abs/0903.0340
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(7)-(10)



(11)-(14)
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(15)—(18)
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These are all the relations we need!



However, control theory also involves more general signal-flow
graphs, which have ‘feedback loops’:

setting

JAN

measured error

measured output

SenSOFZCX

system output



Feedback is the most important concept in control theory: letting
the output of a system affect its input. For this we should let wires
'bend back’. So, we need two more generators:

6. The cup:
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7. The cap:
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Every linear subspace of k™" can be described by a signal-flow
graph built from these generators:
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using composition, tensoring and the braiding.

Thus, any set of linear time-translation-invariant ordinary
differential equations relating inputs and outputs can be described
by such a signal-flow graph.



The extra generators obey some extra relations. Jason Erbele and |
worked out a finite set which imply all the rest. The most
fundamental are the zigzag relations:



The cap and cup let us ‘turn around’ any morphism F: x — y and
get its adjoint FT: y — x.

For example, turning around addition gives coaddition:

This forces the two outputs to sum to the input.



| won't list all the other relations, but the most interesting are the
Frobenius relations:



In A Compositional Framework for Passive Linear Networks,
Brendan Fong and | studied a symmetric monoidal category Circ
whose morphisms are circuit diagrams made of passive linear
components such as resistors, inductors and capacitors.

There is a symmetric monoidal functor
¢: Circ — SigFlow

This says, for any passive linear circuit, how the voltages and
currents on the input wires are related to those on the ouput wires.
Note that

O(GF) = d(G) d(F)

and
O(F® G)=d(F) 2 P(G)


https://johncarlosbaez.wordpress.com/2015/04/28/a-compositional-framework-for-passive-linear-networks/

This functor fits into a larger network of functors translating
between different diagram languages. So far I've studied these:

» circuit diagrams

v

signal flow graphs

v

bond graphs

Markov chains

v

» chemical reaction networks

Markov chains can be seen as a generalization of passive linear
electrical circuits. Chemical reaction networks can be seen as a
nonlinear generalization of Markov chains! But the project of
synthesizing and proving general results about diagram languages
is just starting.


https://johncarlosbaez.wordpress.com/2015/04/28/a-compositional-framework-for-passive-linear-networks/
https://johncarlosbaez.wordpress.com/2015/04/23/categories-in-control-2/
http://math.ucr.edu/home/baez/week292.html
https://johncarlosbaez.wordpress.com/2015/09/04/a-compositional-framework-for-markov-processes/
http://math.ucr.edu/home/baez/networks/#petri

