
NETWORK THEORY

John Baez
Categorical Foundations of Network Theory

Institute for Scientific Interchange, Turin, Italy
25 May 2015

We have left the Holocene and entered a new epoch, the
Anthropocene, when the biosphere is rapidly changing due to
human activities.

http://en.wikipedia.org/wiki/Anthropocene
http://blog.trowbridge.org/index.php?m=200410

I About 1/4 of all chemical energy produced by plants is now
used by humans.

I Humans now take more nitrogen from the atmosphere and
convert it into nitrates than all other processes combined.

I 8-9 times as much phosphorus is flowing into oceans than the
natural background rate.

I The rate of species going extinct is 100-1000 times the usual
background rate.

I And then there’s global warming....

http://www.pnas.org/content/early/2013/05/30/1211349110.abstract
http://www.ecologyandsociety.org/vol14/iss2/art32/main.html#Interference
http://www.ecologyandsociety.org/vol14/iss2/art32/main.html#Interference
http://www.azimuthproject.org/azimuth/show/Extinction

Antarctic ice cores and other data — Global Warming Art

http://www.globalwarmingart.com/wiki/File:Carbon_Dioxide_400kyr_Rev_png
http://www.globalwarmingart.com/wiki/File:Carbon_Dioxide_400kyr_Rev_png

Reconstruction of temperature from 73 different records —

Marcott et al.

http://www.sciencemag.org/content/339/6124/1198.abstract
http://www.sciencemag.org/content/339/6124/1198.abstract

http://arctic.atmos.uiuc.edu/cryosphere/

According to the 2014 IPCC report on climate change, to surely
stay below 2 ◦C of warming, we need a more than 100% reduction
in carbon emissions...

...unless we completely stop carbon emissions by 2040.

http://johncarlosbaez.wordpress.com/2014/04/18/what-does-the-new-ipcc-report-say-about-climate-change-part-7/

So, we can expect that in this century, scientists, engineers and
mathematicians will be increasingly focused on biology, ecology
and complex networked systems — just as the last century was
dominated by physics.

What can category theorists contribute?

To understand ecosystems, ultimately will be to understand
networks. — B. C. Patten and M. Witkamp

In the 1950’s, Howard Odum introduced an Energy Systems
Language to describe ecological networks.

http://en.wikipedia.org/wiki/Energy_Systems_Language
http://en.wikipedia.org/wiki/Energy_Systems_Language

Engineers, chemists, biologists and others now use many diagram
languages to describe networks.

For example, electrical engineers use circuit diagrams:

https://en.wikipedia.org/wiki/Circuit_diagram
http://math.ucr.edu/home/baez/networks_oxford/#I

Control theorists use signal-flow diagrams:

http://math.ucr.edu/home/baez/networks_oxford/#I
http://math.ucr.edu/home/baez/networks_oxford/#I

Stochastic Petri nets are used in chemistry, evolutionary game
theory and epidemiology:

http://math.ucr.edu/home/baez/stoch_stable.pdf
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/

Systems Biology Graphical Notation has 3 diagram languages for
biological networks. For example, ‘process description language’
generalizes stochastic Petri nets:

We need a good mathematical theory of all diagram languages!

http://www.sbgn.org/Main_Page
http://www.sbgn.org/Main_Page

Category theorists already treat ‘string diagrams’ as a syntax for
morphisms in symmetric monoidal categories.

Physicists are starting to explicitly use ‘functorial semantics’:

F : Syntax→ Semantics

where F is a symmetric monoidal functor.

But we need to extend this idea from the rarefied world of particle
physics to humbler but more practical applications!

Where to start? Three good places:

1. electrical circuit diagrams and signal-flow diagrams

2. stochastic Petri nets and chemical reaction networks

3. Bayesian networks

All these can be seen as ‘warmup exercises’ for biology and ecology.

Let’s look at item 1. Start with the simplest thing: circuits made
of linear resistors! In such a circuit, the voltages and currents at
the terminals obey a ‘linear relation’.

http://math.ucr.edu/home/baez/networks_oxford/#I
http://math.ucr.edu/home/baez/networks_oxford/#II
http://math.ucr.edu/home/baez/networks_oxford/#III

A linear relation F : U V from a vector space U to a vector
space V is a linear subspace F ⊆ U ⊕ V .

We can compose linear relations F : U V and G : V W and
get a linear relation G ◦ F : U W :

G ◦ F = {(u,w) : ∃v ∈ V (u, v) ∈ F and (v ,w) ∈ G}.

So, there is category FinRelk with finite-dimensional vector spaces
over the field k as objects and linear relations as morphisms.

A linear map φ : U → V gives a linear relation F : U V , namely
the graph of that map:

F = {(u, φ(u)) : u ∈ U}

Composing linear maps becomes a special case of composing linear
relations.

So, FinRelk has FinVectk as a subcategory.

Brendan Fong has constructed a symmetric monoidal functor

F : ResCirc→ FinRelR

where:

I ResCirc is a category with circuits made of resistors as
morphisms.

I FinRelR has finite-dimensional real vector spaces as objects
and linear relations as morphisms — with ⊕ as tensor product!

I F sends any circuit with m input wires and n output wires to
the linear relation between:

I the input voltages and currents (V , I) ∈ R2m

and
I the output voltages and currents (V ′, I ′) ∈ R2n.

F treats the circuit as a ’black box’, forgetting its internal
structure and only remembering what it does.

https://johncarlosbaez.wordpress.com/2015/04/28/a-compositional-framework-for-passive-linear-networks/

We can generalize this in many ways:

I Circuits made of linear resistors, inductors, and
capacitors. Now we get linear relations between
finite-dimensional vector spaces over C(z): the field of
complex rational functions in one variable z , which has the
meaning of differentiation. Our syntax-to-semantics functor
becomes

F : LinCirc→ FinRelC(z)

I Circuits that also include batteries and current sources.
Now instead of linear relations between voltage and current
we get more general affine ones.

I Nonlinear circuits. These are much more complicated and
interesting! There’s a lot of work to do here.

In the end we will see this as a morphism in an interesting
symmetric monoidal category:

http://math.ucr.edu/home/baez/networks/networks_1.html

Why are electrical circuits worth so much study?

The mathematics governing them is isomorphic to that governing
many other fields of engineering!

Field q q̇ p ṗ

Mechanics position velocity momentum force
Electronics charge current flux linkage voltage
Hydraulics volume flow pressure pressure

momentum
Thermodynamics entropy entropy flow temperature temperature

momentum
Chemistry moles molar flow chemical chemical

momentum potential

Engineers often study hybrid — or in computer science
terminology, ’typed’ — systems involving mechanical, electronic
and other elements:

These can be described using multi-typed versions of the
symmetric monoidal categories mentioned so far.

http://electrical-engineering-portal.com/can-i-go-off-grid-with-hybrid-systems

Odum’s Energy Systems Language also fits into this framework:

http://en.wikipedia.org/wiki/Energy_Systems_Language

Some problems category theorists can solve. Given any
‘syntax-to-semantics functor’, e.g.

F : ResCirc→ FinRelR

it is interesting to ask:

I What morphisms are in the image of F? That is: what
‘behaviors’ can be ‘realized’?

(In this example, Fong has shown the answer is ‘Dirichlet
relations between symplectic vector spaces R2n’.)

I When does F map two morphisms f , g : x → y to the same
morphism? Can we find a sufficient set of ‘rewrite rules’ that
let us rewrite f and get g whenever F (g) = F (f)?

(In this example, there is a nice answer for planar circuits
made of resistors — see de Verdière–Gitler–Vertigan.)

http://arxiv.org/abs/1504.05625
http://www-fourier.ujf-grenoble.fr/~ycolver/All-Articles/96c.pdf

I For any network, can we find a ‘simplest’ one that realizes the
same behavior?

For example, can we find a confluent terminating set of rewrite
rules that let us rewrite any morphism f : x → y to a ‘normal
form’: a specific choice of g : x → y with F (g) = F (f)?

(For planar circuits made of resistors see Alman–Lian–Tran.)

http://arxiv.org/abs/1309.2697

Some problems category theorists should learn about

Network theory brings new issues from applied mathematics to the
table of category theory!

For example, control theorists want to ‘control’ a system:

This involves the concepts of ‘observability’, ‘controllability’ and
‘stability’.

http://math.ucr.edu/home/baez/networks_oxford/#I

I An electrical circuit is observable if by looking at the currents
and voltages on output wires, we can determine those on the
other wires.

I It is controllable if by controlling the currents and voltages
on input wires, we can make those on the other wires be
whatever we want.

These are ‘dual’ in the categorical sense. Observability says
something is an mono. Controllability says something is an epi...
but this needs clarification!

https://en.wikipedia.org/wiki/Observability
https://en.wikipedia.org/wiki/Controllability

I A linear circuit is stable if bounded inputs produce bounded
outputs.

Control theory is very interested in making a circuit ‘stable’ by
composing and tensoring it with other circuits. For linear circuits,
stability studied is using complex analysis. So, we should think
about poles, etc. for morphisms in FinRelC(z).

Everything becomes harder and more interesting for nonlinear
systems... like living systems, or the Earth’s climate!

https://en.wikipedia.org/wiki/BIBO_stability

The role of higher categories

Since networks are not just processes but also things, there are also
morphisms between networks! Examples include:

I symmetries of networks

I rewrites for simplifying networks

I evolution of networks over time

So, we have symmetric monoidal bicategories where the morphisms
are networks, but there are also 2-morphisms between these
morphisms.

k-tuply monoidal n-categories

n = 0 n = 1 n = 2
k = 0 sets categories bicategories
k = 1 monoids monoidal monoidal

categories bicategories
k = 2 commutative braided braided

monoids monoidal monoidal
categories bicategories

k = 3 ‘’ symmetric sylleptic
monoidal monoidal
categories bicategories

k = 4 ‘’ ‘’ symmetric
monoidal

bicategories
k = 5 ‘’ ‘’ ‘’

A network diagram often amounts to a labelled graph with some
designated ‘inputs’ and ‘outputs’. It is thus a cospan in some
category of labelled graphs.

A cospan is a diagram shaped like this:

S

X

i
??

Y

j
__

A map of cospans is a diagram like this:

S

X

i

Y

j

S ′
i ′ j ′

f

where the triangles commute.

Theorem (Alex Hoffnung and Mike Stay)

For any category C with finite colimits, there is a symmetric
monoidal bicategory Span(C) with:

I objects of C as its objects

I cospans in C morphisms

I maps of cospans in C as 2-morphisms

http://arxiv.org/abs/1112.0560
http://arxiv.org/abs/1301.1053

As a consequence, there’s a symmetric monoidal bicategory where:

I objects are finite sets X ,Y , . . .

I morphisms f : X → Y are circuits made of linear resistors,
inductors, and capacitors going from X to Y . Technically,
these are cospans of graphs with labelled edges:

S

X Y

where the graphs X ,Y have no edges, so they’re just sets of
vertices.

I 2-morphisms are symmetries of circuits. These are invertible
maps of cospans:

S

X Y

S ′

∼

Let us call this symmetric monoidal bicategory L̃inCirc. There is a
symmetric monoidal functor called ‘decategorification’

Decat : L̃inCirc→ LinCirc

sending

I each object to itself,

I each morphism to its isomorphism class,

I each 2-morphism to an identity 2-morphism.

where as usual, we treat a category as a bicategory with only
identity 2-morphisms.

In plain English:

Decat : L̃inCirc→ LinCirc

identifies any two circuits related by a symmetry and then discards
the symmetries.

So: for many purposes we can work with the category LinCirc
where we pretend isomorphic circuits are equal...

...but when we want, we can work with the bicategory L̃inCirc
where we admit they are merely isomorphic!

There’s a commutative square

L̃inCirc
Decat //

��

LinCirc

��
SigFlowC(z)

F // FinRelC(z)

Here the vertical arrows are ‘syntax-to-semantics’ functors,
SigFlow is the symmetric monoidal bicategory where

I objects are finite sets

I morphisms are signal-flow diagrams as in control theory,

I 2-morphisms are symmetries of signal-flow diagrams.

and F interprets any signal-flow diagram as a linear relation.

Now let’s discuss signal-flow diagrams and linear relations more
precisely. Here is a very simple signal-flow diagram:

∫

∫

1
m

It describes a rock!

A more interesting system is the inverted pendulum on a cart:

This has the following signal-flow diagram...

http://math.ucr.edu/home/baez/networks_oxford/#I

−mg

1
M

∫

∫

−1
l

∫
g
l ∫

Using Laplace transforms, engineers treat the process of
integrating a signal as scalar multiplication by 1/z , where z is the
Laplace transform variable:

∫
= 1

z

So, integration is just an example of ’multiplying by a scalar’ if we
work over the field k = C(z). Let’s work over a general field k.

Theorem (Jason Erbele)

The category FinVectk , with

I finite-dimensional vector spaces over k as objects,

I linear maps as morphisms,

is symmetric monoidal with ⊕ as its tensor product. It is generated
as a symmetric monoidal category by one object, k, and these
morphisms:

c

where c ∈ k .

1. For each c ∈ k we can multiply numbers by c :

c

This is a notation for the linear map

c : k → k
x 7→ cx

2. We can add numbers:

This is a notation for the linear map

+: k ⊕ k → k
(x , y) 7→ x + y

3. We can duplicate a number:

This is a notation for the linear map

∆: k → k ⊕ k
x 7→ (x , x)

4. We can delete a number:

This is a notation for the linear map

! : k → {0}
x 7→ 0

5. We have the number zero:

This is a notation for the linear map

0: {0} → k
0 7→ 0

In fact we know what relations these generating morphisms obey:

Theorem (Jason Erbele)

FinVectk is the free symmetric monoidal category on a
bicommutative bimonoid over k.

Later Simon Wadsley and Nick Woods showed this holds for the
category of finitely generated free modules over any commutative
rig k.

The jargon here is a terse way to list 18 relations obeyed by scalar
multiplication, addition, duplication, deletion and zero. In detail...

http://arxiv.org/abs/1505.00048

(1)–(3) Addition and zero make k into a commutative monoid:

= = =

(4)–(6) Duplication and deletion make k into a cocommutative
comonoid:

= = =

(7)–(10) The monoid and comonoid structures on k fit together
to form a bimonoid:

= =

= =

(11)–(14) The rig structure of k can be recovered from the
generating morphisms:

c

b

=bc b+c = b c

1 = 0 =

(15)–(18) Scalar multiplication by c ∈ k commutes with the
generating morphisms:

c c

=
c c =

c c
=

c c =

Jason Erbele showed that besides the previously listed generators of
FinVectk we only need two more morphisms to generate FinRelk :

6. The ‘cup’:

This is the linear relation

∪ : k ⊕ k {0}

given by:

∪ = {(x , x , 0) : x ∈ k} ⊆ k ⊕ k ⊕ {0}

7. The ‘cap’:

This is the linear relation

∩ : {0} k ⊕ k

given by:

∩ = {(0, x , x) : x ∈ k} ⊆ {0} ⊕ k ⊕ k

Theorem (Jason Erbele)

The category FinRelk , with

I finite-dimensional vector spaces over k as objects,

I linear relations as morphisms,

is symmetric monoidal with ⊕ as its tensor product. It is
equivalent to the symmetric monoidal category generated by one
object, k , and these morphisms:

c

obeying a list of 31 relations.

Besides the relations we’ve seen so far, they are these:

(19)–(20) ∩ and ∪ obey the zigzag relations:

= =

It follows that (FinRelk ,⊕) becomes a dagger-compact category,
so we can ‘turn around’ any morphism F : U V and get a
morphism F † : V U:

F † = {(v , u) : (u, v) ∈ F}

For example, turning around duplication ∆: k → k ⊕ k gives
coduplication, ∆† : k ⊕ k k :

:=

∆† = {(x , x , x)} ⊆ (k ⊕ k)⊕ k

http://en.wikipedia.org/wiki/Dagger_compact_category

(21)–(22) (k ,+, 0,+†, 0†) is a Frobenius monoid:

= =

(23)–(24) (k ,∆†, !†,∆, !) is a Frobenius monoid:

= =

(25)–(26) The Frobenius monoid (k ,+, 0,+†, 0†) is extra-special:

= =

(27)–(28) The Frobenius monoid (k ,∆†, !†,∆, !) is extra-special:

= =

(29) ∪ with a factor of −1 inserted can be expressed in terms of +
and 0:

−1 =

(30) ∩ can be expressed in terms of ∆ and !:

=

(31) For any c ∈ k with c 6= 0, scalar multiplication by c−1 is the
adjoint of scalar multiplication by c :

c = c−1

This list of relations has been confirmed and given a nice
interpretation by Bonchi, Sobociński and Zanasi.

http://arxiv.org/abs/1403.7048

The symmetric monoidal bicategory SigFlowk has the same
generating morphisms as FinRelk , but not the relations. There is a
functor

SigFlowk
F // FinRelk

sending each signal flow diagram to the linear relation it names.

And finally, there is a commutative diagram:

L̃inCirc
Decat //

��

LinCirc

��
SigFlowC(z)

F // FinRelC(z)

