
The Mathematics of Open Reaction Networks

X Y

John Baez
U. C. Riverside / Centre for Quantum Technologies

Dynamics, Thermodynamics and Information Processing
in Chemical Networks

June 13, 2017



In many areas of science and engineering, people use networks,
drawn as boxes connected by wires:

We need a good general theory of these!

http://math.ucr.edu/home/baez/networks/networks_1.html
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/


Networks come in many kinds, but they share some general
features.

Let’s illustrate them with the simplest case, where a network is just
a graph: a set V of vertices, a set E of edges, and maps
s, t : E → V assigning each edge its source and target:

s(e)
t(e)

e



Networks with specified inputs and outputs let us describe open
systems, meaning systems where stuff can flow in or out:

X Y

Beware: we don’t require that stuff flow in at the ‘inputs’ and out
at the ‘outputs’.

The distinction between inputs and outputs is still useful. We can
stick together two open systems by attaching the outputs of the
first to the inputs of the second, if they match.



We write a network with inputs X and outputs Y as f : X → Y .
We can compose f : X → Y

X Y

and g : Y → Z

Y Z

obtaining gf : X → Z , as follows:

X Z



Composition obeys the associative law:

(hg)f = h(gf )

and every object has a morphism 1X : X → X that’s the identity
for composition. So, we get a category with networks of our
chosen kind as morphisms.

But we get more, since we can also set networks side by side, or
‘tensor’ them.



Given f : X → Y

X Y

and g : X ′ → Y ′

X ′ Y ′

we tensor them to get f ⊗ g : X ⊗ X ′ → Y ⊗ Y ′ as follows:

X ⊗ X ′ Y ⊗ Y ′



Composition and tensoring obey some well-known rules, such as

(g ⊗ g ′)(f ⊗ f ′) = gf ⊗ g ′f ′

These rules form the definition of a monoidal category.



Monoidal categories let us study the behavior of open systems
using Lawvere’s idea of ‘functorial semantics’. This is already
popular in computer science.

There’s a category where the morphisms are programs in a given
language. The map sending each program to its behavior is a
functor.

The same idea works for chemical reaction networks!



Given categories C and D, a functor F : C→ D does this:
I It sends each object X of C to an object F (X ) of D.
I It sends each morphism f : X → Y in C to a morphism

F (f ) : F (X )→ F (Y ) in D.
I It preserves composition: F (gf ) = F (g)F (f ).
I It preserves identities: F (1X ) = 1F (X).

A monoidal functor between monoidal categories also preserves
tensor products: F (f ⊗ g) = F (f )⊗ F (g).



If you pick a computer language, there’s a monoidal category C in
which:
I an object is a data type;
I a morphism f : X → Y is a program that takes data of type X

as input and gives data of type Y as output;
I composing f : X → Y and g : Y → Z gives a program

gf : X → Z that does first f and then g ;
I tensoring f : X → Y and g : X ′ → Y gives a program

f ⊗ g : X ⊗ X ′ → Y ⊗ Y ′ that does f and g in parallel.
If each program computes some function, we get a monoidal
functor F : C→ Set, where Set is the category where:
I objects are sets,
I morphisms are functions.

In reality not all programs halt, so we get F : C→ Setpart, where
the morphisms are partially defined functions.



We can apply the same philosophy — functorial semantics — to
networks of many kinds:
I Networks of a chosen kind, with specified input and outputs,

will be morphisms in a monoidal category C.
I The ‘behavior’ of these networks will be described by a

monoidal functor F : C→ D where D is a monoidal category
good for semantics, e.g. Set.

I We can also use monoidal functors to describe ways of
converting one kind of network to another — thus developing
a unified theory of networks.



To carry out this program we can use decorated cospans:
I Brendan Fong, The Algebra of Open and Interconnected

Systems, Ph.D. thesis, Oxford University, 2016.

For example, this:

X Y

is really a cospan of finite sets:

V

X
i ??

Y
o__

where V is ‘decorated’ with extra structure making it into the set
of vertices of a graph: E

s //
t
// V .

https://johncarlosbaez.wordpress.com/2016/10/23/open-and-interconnected-systems/
https://johncarlosbaez.wordpress.com/2016/10/23/open-and-interconnected-systems/


To make a monoidal category of open reaction networks, it’s best
to take any reaction network:

A + B τ1−→ C

C τ2−→ 2B

and draw it as a Petri net:

C
B

A τ1

τ2

A Petri net is a bipartite graph. It has two kinds of vertices,
places and transitions, or for chemists, species and reactions.
An edge can only go from one kind of vertex to the other kind.



Theorem (JB–Blake Pollard)
There is a monoidal category RNet where:
I an object is a finite set;
I a morphism f : X → Y is an open reaction network: a Petri

net together with functions from X and Y to its set of species:

X Y

http://math.ucr.edu/home/baez/RxNet.pdf


I To compose f : X → Y and g : Y → Z

X ZY

we attach the outputs of f to the inputs of g :

X Z

I To tensor open reaction networks, we set them side by side.



Reachability Semantics

Given an open reaction network f : X → Y , we can ask whether
a ∈ NX can be carried to b ∈ NY by a series of reactions. If so, we
say b is reachable from a.

In this example b = (0, 2) is reachable from a = (2, 1, 1)

X
1

2
1 Y



Reachability Semantics

Given an open reaction network f : X → Y , we can ask whether
a ∈ NX can be carried to b ∈ NY by a series of reactions. If so, we
say b is reachable from a.

In this example b = (0, 2) is reachable from a = (2, 1, 1)

2
X Y

2



Reachability Semantics

Given an open reaction network f : X → Y , we can ask whether
a ∈ NX can be carried to b ∈ NY by a series of reactions. If so, we
say b is reachable from a.

In this example b = (0, 2) is reachable from a = (2, 1, 1)

2X Y



Reachability Semantics

Given an open reaction network f : X → Y , we can ask whether
a ∈ NX can be carried to b ∈ NY by a series of reactions. If so, we
say b is reachable from a.

In this example b = (0, 2) is reachable from a = (2, 1, 1)

0

2
X Y



Each open reaction network f : X → Y determines a reachability
relation

F (f ) = {(a, b) : b is reachable from a} ⊆ NX × NY

Theorem (JB)
Let Rel be the category where:
I objects are sets,
I a morphism from S to T is a relation R ⊆ S × T.

There is a monoidal functor

F : RNet→ Rel

sending each finite set X to NX and each open reaction network
f : X → Y to the reachability relation F (f ) ⊆ NX × NY .



Rate Equation Semantics

Computer scientists like the reachability semantics. But for
chemists, the ‘behavior’ of a reaction network with rates is often
described by its rate equation. To write down this equation we
need to choose for each reaction a positive real number called its
rate constant.

For example, this Petri net:

C
B

A τ1

τ2

becomes a Petri net with rates if we choose r1, r2 > 0.



Rate Equation Semantics

Computer scientists like the reachability semantics. But for
chemists, the ‘behavior’ of a reaction network with rates is often
described by its rate equation. To write down this equation we
need to choose for each reaction a positive real number called its
rate constant.

For example, this Petri net:

C
B

A τ1r1

τ2r2

becomes a Petri net with rates if we choose r1, r2 > 0.



Theorem (JB–Blake Pollard)
There is a monoidal category RxNet where:
I an object is a finite set;
I a morphism f : X → Y is an open reaction network with
rates: a Petri net with rates together with functions from X
and Y to its set of species:

r1X Y

http://math.ucr.edu/home/baez/RxNet.pdf


An open reaction network with rates f : X → Y gives an open
rate equation involving flows in and out, which can be arbitrary
smooth functions of time. For example this:

A1
A3

A2

r1

X Y

I1
I2
I3

O1

gives:
dA1
dt = −r1 A1A2 + I1(t)

dA2
dt = −r1 A1A2 + I2(t) + I3(t)

dA3
dt = 2r1 A1A2 − O1(t)



An open reaction network with rates f : X → Y gives an open
rate equation involving flows in and out, which can be arbitrary
smooth functions of time. For example this:

A1
A3

A2

r1

X Y
I1
I2
I3

O1

gives:
dA1
dt = −r1 A1A2 + I1(t)

dA2
dt = −r1 A1A2 + I2(t) + I3(t)

dA3
dt = 2r1 A1A2 − O1(t)



There is a monoidal category Dynam where:
I an object is a finite set;
I a morphism f : X → Y is an open dynamical system,

meaning a cospan of finite sets

S

X
i ??

Y
o__

equipped with a smooth vector field v on RS .

Given input and output flows I(t) ∈ RX , O(t) ∈ RY , an open
dynamical system describes how A(t) ∈ RS changes with time:

d
dt A(t) = v(A(t)) + i∗(I(t))− o∗(O(t))

where i∗, o∗ push forward R-valued functions from X ,Y to S. The
open rate equation is of this form.



Theorem (JB–Blake Pollard)
There is a monoidal functor � : RxNet→ Dynam sending any
open Petri net with rates to its open dynamical system.

So, we can determine the rate equation of a reaction network with
rates by breaking it down into simpler open reaction network nets
with rates, and repeatedly using:

�(fg) = �(f )�(g)

�(f ⊗ g) = �(f )⊗�(g)

http://math.ucr.edu/home/baez/RxNet.pdf


The same methods let us study many kinds of networks — and fit
them into a unified theory of networks.

I Electrical circuits: JB and Brendan Fong, A compositional
framework for passive linear networks.

X Y

2

3
1 1

http://http://arxiv.org/abs/1504.05625
http://http://arxiv.org/abs/1504.05625


I Markov processes: JB, Brendan Fong and Blake Pollard, A
compositional framework for Markov processes.

X Y
4.3

2.1
1.7

0.6

3.9

http://arxiv.org/abs/1508.06448
http://arxiv.org/abs/1508.06448


I Reaction networks: JB and Blake Pollard, A compositional
framework for reaction networks.

And coming soon: Blake Pollard, Open Markov Processes and
Reaction Networks, Ph.D. Thesis, U. C. Riverside, 2017.

X Y

https://arxiv.org/abs/1704.02051
https://arxiv.org/abs/1704.02051


I Signal-flow graphs in control theory:
Jason Erbele, Categories in Control: Applied PROPs, Ph.D.
Thesis, U. C. Riverside, 2016.

−mg

1
M

∫

∫

−1
l

∫
g
l ∫

https://arxiv.org/abs/1611.07591


We find a ‘network of networks’: interesting monoidal categories
connected by monoidal functors:

RxNet

Dynam

Rel

MarkovResCirc

Circ

SigFlow

�

�

steady states



We find a ‘network of networks’: interesting monoidal categories
connected by monoidal functors:

RxNet

Dynam

Rel

MarkovResCirc

Circ

SigFlow

�

�

steady states



We find a ‘network of networks’: interesting monoidal categories
connected by monoidal functors:

RxNet

Dynam

Rel

Markov

ResCirc

Circ

SigFlow

�

�

steady states



We find a ‘network of networks’: interesting monoidal categories
connected by monoidal functors:

RxNet

Dynam

Rel

MarkovResCirc

Circ

SigFlow

�

�

steady states



We find a ‘network of networks’: interesting monoidal categories
connected by monoidal functors:

RxNet

Dynam

Rel

MarkovResCirc

Circ

SigFlow

�

�

steady states



We find a ‘network of networks’: interesting monoidal categories
connected by monoidal functors:

RxNet

Dynam

Rel

MarkovResCirc

Circ

SigFlow

�

�

steady states



We find a ‘network of networks’: interesting monoidal categories
connected by monoidal functors:

RxNet

Dynam

Rel

MarkovResCirc

Circ

SigFlow

�

�

steady states


