Black-boxing open reaction networks

Blake S. Pollard
Department of Physics and Astronomy
University of California, Riverside

Dynamics, Thermodynamics, and
Information Processing in Chemical Networks

> Luxembourg
> June 13,2017

Black-boxing

We saw that there is a functor

$$
\square: \text { RxNet } \rightarrow \text { Dynam, }
$$

the gray-boxing functor, sending an open reaction network to the open dynamical system generated by mass-action kinetics.

Here,

- RxNet is the category of open reaction networks and
- Dynam is the category of open dynamical systems.

I'll describe a functor ■: Dynam \rightarrow Rel sending an open dynamical system to the space of possible steady state inflows and outflows.

Black boxing

Black boxing

$$
\begin{aligned}
& v_{A}=-r(\alpha) A B \\
& v_{B}=-r(\alpha) A B \\
& v_{C}=2 r(\alpha) A B-r(\beta) C \\
& v_{E}=r(\beta) C \\
& v_{F}=r(\beta) C
\end{aligned}
$$

Black boxing

$$
\begin{aligned}
& \frac{d A}{d t}=-r(\alpha) A B+I_{1} \\
& \frac{d B}{d t}=-r(\alpha) A B+I_{2}+I_{3} \\
& \frac{d C}{d t}=2 r(\alpha) A B-r(\beta) C \\
& \frac{d E}{d t}=r(\beta) C-O_{5} \\
& \frac{d F}{d t}=r(\beta) C-O_{6}
\end{aligned}
$$

Black-boxing

$$
\begin{aligned}
\text { a } & =-r(\alpha) A B+I_{1} \\
0 & =-r(\alpha) A B+I_{2}+I_{3} \\
0 & =2 r(\alpha) A B-r(\beta) C \\
0 & =r(\beta) C-O_{5} \\
0 & =r(\beta) C-O_{6}
\end{aligned}
$$

Black-boxing

$$
\begin{gathered}
I_{1}=r(\alpha) A B \\
I_{2}+I_{3}=r(\alpha) A B \\
2 r(\alpha) A B=r(\beta) C \\
O_{5}=r(\beta) C \\
O_{6}=r(\beta) C .
\end{gathered}
$$

Open reaction networks

Theorem (Baez, BP.)

There is a category RxNet whose objects are finite sets and whose morphisms correspond to open reaction networks.

$$
R: X \rightarrow Y
$$

Composition of open reaction networks

Given another open reaction network $R^{\prime}: Y \rightarrow Z$

Composition of open reaction networks

To compose $R: X \rightarrow Y$ and $R^{\prime}: Y \rightarrow Z$ we first combine them

Composition of open reaction networks

Then, we identify any species which are in the image of the same point in Y

This gives a new open reaction network $R R^{\prime}: X \rightarrow Z$.

A category of open dynamical systems

Definition

An open dynamical system $D: X \rightarrow Y$ on S consists of a cospan of finite sets

together with a polynomial vector field v on \mathbb{R}^{S}.

Theorem (Baez, P.)

There is a category Dynam where objects are finite sets and morphisms are isomorphism classes of open dynamical systems.

The gray-boxing functor

Theorem (Baez, P.)
There is a functor $\square:$ RxNet \rightarrow Dynam sending an open reaction network to its corresponding open dynamical system generated by the rate equation.

For open reaction networks $R: X \rightarrow Y$ and $R^{\prime}: Y \rightarrow Z$, the gray-boxing functor satisfies

$$
\square\left(R R^{\prime}\right)=\square(R) \square\left(R^{\prime}\right) .
$$

The gray-boxing functor

$(R: X \rightarrow Y)$

$$
\begin{aligned}
& v_{A}=-r(\alpha) A(t) B(t) \\
& v_{B}=-r(\alpha) A(t) B(t) \\
& v_{C}=2 r(\alpha) A(t) B(t)
\end{aligned}
$$

The gray-boxing functor

$\left(R^{\prime}: Y \rightarrow Z\right)$

$$
\begin{aligned}
& v_{D}=-r(\beta) D(t) \\
& v_{E}=r(\beta) D(t) \\
& v_{F}=r(\beta) D(t)
\end{aligned}
$$

Composition in Dynam

$\square(R: X \rightarrow Y) ■\left(R^{\prime}: Y \rightarrow Z\right)$

Composition in Dynam

$\square(R: X \rightarrow Y) \square\left(R^{\prime}: Y \rightarrow Z\right)$

$$
\begin{aligned}
v_{A} & =-r(\alpha) A B \\
v_{B} & =-r(\alpha) A B \\
v_{C}+v_{D} & =2 r(\alpha) A B-r(\beta) D \text { and } C=D \\
v_{E} & =r(\beta) D \\
v_{F} & =r(\beta) D
\end{aligned}
$$

The gray-boxing functor ($R R^{\prime}: X \rightarrow Z$)

$$
\begin{aligned}
& v_{A}=-r(\alpha) A B \\
& v_{B}=-r(\alpha) A B \\
& v_{C}=2 r(\alpha) A B-r(\beta) C \\
& v_{E}=r(\beta) C \\
& v_{F}=r(\beta) C
\end{aligned}
$$

The open rate equation

Let $I: \mathbb{R} \rightarrow \mathbb{R}^{X}$ and $O: \mathbb{R} \rightarrow \mathbb{R}^{Y}$ be arbitrary smooth functions of time specifying the inflows and outflows.

$$
\begin{aligned}
& \frac{d A(t)}{d t}=-r(\alpha) A(t) B(t)+I_{1}(t) \\
& \frac{d B(t)}{d t}=-r(\alpha) A(t) B(t)+I_{2}(t)+I_{3}(t) \\
& \frac{d C(t)}{d t}=2 r(\alpha) A(t) B(t)-O_{4}(t)
\end{aligned}
$$

The open rate equation

Given an open dynamical system together with specified inflows $I \in \mathbb{R}^{X}$ and outflows $O \in \mathbb{R}^{X}$, we define the pushforward $i_{*}: \mathbb{R}^{X} \rightarrow \mathbb{R}^{S}$ by

$$
i_{*}(I)_{\sigma}=\sum_{\{x: i(x)=\sigma\}} I_{x}
$$

and define $o_{*}: \mathbb{R}^{Y} \rightarrow \mathbb{R}^{S}$ by

$$
o_{*}(O)_{\sigma}=\sum_{\{y: o(y)=\sigma\}} O_{y} .
$$

We can then write down the open rate equation as

$$
\frac{d c(t)}{d t}=v(c(t))+i_{*}(I(t))-o_{*}(O(t))
$$

Steady states

A steady state solution of the open rate equation is a concentration vector $c \in \mathbb{R}^{S}$ such that

$$
\frac{d c}{d t}=0
$$

From the open rate equation

$$
\frac{d c}{d t}=v(c)+i_{*}(I)-o_{*}(O)
$$

we see that this implies

$$
v(c)=o_{*}(O)-i_{*}(I)
$$

This imposes relations among the steady state concentrations and flows along the boundary.

Rel

A relation $L: U \rightsquigarrow V$ is a subspace $L \subseteq U \oplus V$.
There is a category Rel where an object is real vector space and a morphism is a relation between real vector spaces.

Given relations $L: U \rightsquigarrow V$ and $L^{\prime}: V \rightsquigarrow W$, their composite $L L^{\prime}: U \rightsquigarrow W$ is given by

$$
L L^{\prime}=\left\{(u, w): \exists v \in V \text { with }(u, v) \in L \text { and }(v, w) \in L^{\prime}\right\}
$$

Composition in Rel requires that the subspaces agree on their overlap.

Composition in Rel

Given the relation $L: \mathbb{R} \rightsquigarrow \mathbb{R}^{2}$

$$
L=\left\{(w, x, y) \mid w=y^{2}\right\}
$$

and the relation $L^{\prime}: \mathbb{R}^{2} \rightsquigarrow \mathbb{R}$

$$
L^{\prime}=\left\{\left(x^{\prime}, y^{\prime}, z\right) \mid y^{\prime}=z\right\},
$$

their composite $L L^{\prime}: \mathbb{R} \rightsquigarrow \mathbb{R}$ is

$$
L L^{\prime}=\left\{(w, z) \mid w=z^{2}\right\}
$$

Steady state behavior

We characterize the steady state behavior of an open reaction network in terms of the relation imposed between inputs and outputs.

$$
\begin{aligned}
\frac{d A(t)}{d t} & =-r(\alpha) A(t) B(t)+I_{1}(t) \\
\frac{d B(t)}{d t} & =-r(\alpha) A(t) B(t)+I_{2}(t)+I_{3}(t) \\
\frac{d C(t)}{d t} & =2 r(\alpha) A(t) B(t)-O_{4}(t)
\end{aligned}
$$

Steady state behavior

$$
\begin{aligned}
& c_{X}=\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{R}^{X}, \quad I_{X}=\left(I_{1}, l_{2}, l_{3}\right) \in \mathbb{R}^{X} \\
& c_{Y}=c_{4} \in \mathbb{R}^{Y}, \quad O_{Y}=O_{4} \in \mathbb{R}^{Y}
\end{aligned}
$$

$$
\left(c_{X}, I_{X}, c_{Y}, O_{Y}\right) \subseteq \mathbb{R}^{X} \oplus \mathbb{R}^{X} \oplus \mathbb{R}^{Y} \oplus \mathbb{R}^{Y}
$$

such that

$$
\begin{gathered}
I_{1}=r(\alpha) A B \\
I_{2}+I_{3}=r(\alpha) A B \\
O_{4}=2 r(\alpha) A B
\end{gathered}
$$

Steady state behavior

$$
\begin{aligned}
& c_{X}=\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{R}^{X}, \quad I_{X}=\left(I_{1}, l_{2}, l_{3}\right) \in \mathbb{R}^{X} \\
& c_{Y}=c_{4} \in \mathbb{R}^{Y}, \quad O_{Y}=O_{4} \in \mathbb{R}^{Y}
\end{aligned}
$$

$$
\left(c_{1}, c_{2}, c_{3}, l_{1}, l_{2}, l_{3}, c_{4}, O_{4}\right) \subseteq \mathbb{R}^{X} \oplus \mathbb{R}^{X} \oplus \mathbb{R}^{Y} \oplus \mathbb{R}^{Y}
$$

such that

$$
\begin{gathered}
I_{1}=r(\alpha) A B \\
I_{2}+I_{3}=r(\alpha) A B \\
O_{4}=2 r(\alpha) A B
\end{gathered}
$$

Steady state behavior

$$
\begin{gathered}
c_{X}=\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{R}^{X}, \quad I_{X}=\left(I_{1}, I_{2}, l_{3}\right) \in \mathbb{R}^{X} \\
c_{Y}=c_{4} \in \mathbb{R}^{Y}, \quad O_{Y}=O_{4} \in \mathbb{R}^{Y}
\end{gathered}
$$

$$
\left(c_{1}, c_{2}, c_{3}, l_{1}, l_{2}, l_{3}, c_{4}, O_{4}\right)
$$

$\left(A, B, B, r(\alpha) A B, I_{2}, r(\alpha) A B-I_{2}, C, 2 r(\alpha) A B\right)$

The black-box functor

Theorem (Baez, P.)

There is a functor

$$
\boldsymbol{\square}: \text { Dynam } \rightarrow \operatorname{Rel}
$$

sending an open dynamical system to the relation characterizing its steady state boundary concentrations and flows.

The black-box functor

Theorem (Baez, P.)

There is a functor

$$
\boldsymbol{\square}: \text { Dynam } \rightarrow \operatorname{Rel}
$$

sending an open dynamical system to the relation characterizing its steady state boundary concentrations and flows.

Theorem (Baez, P.)

Composing the gray-boxing and black-boxing functors gives a functor

$$
\text { RxNet } \xrightarrow{\square} \text { Dynam } \xrightarrow{\square} \text { Rel }
$$

sending an open reaction network to the subspace of possible steady state boundary concentrations and flows.

Black-boxing

($R: X \rightarrow Y$)

$$
\begin{aligned}
& \frac{d A(t)}{d t}=-r(\alpha) A(t) B(t)+I_{1}(t) \\
& \frac{d B(t)}{d t}=-r(\alpha) A(t) B(t)+I_{2}(t)+I_{3}(t) \\
& \frac{d C(t)}{d t}=2 r(\alpha) A(t) B(t)-O_{4}(t)
\end{aligned}
$$

Black-boxing

$$
\begin{aligned}
& \square(\square)): \mathbb{R}^{X} \oplus \mathbb{R}^{X} \rightsquigarrow \mathbb{R}^{Y} \oplus \mathbb{R}^{Y}
\end{aligned}
$$

$$
\begin{aligned}
& \left(c_{X}, I_{X}, c_{Y}, O_{Y}\right)
\end{aligned}
$$

such that

$$
\begin{gathered}
I_{1}=r(\alpha) A B \\
I_{2}+I_{3}=r(\alpha) A B \\
O_{4}=2 r(\alpha) A B
\end{gathered}
$$

The 'gray-boxing' functor

$$
\left(R^{\prime}: Y \rightarrow Z\right)
$$

$$
\begin{aligned}
\frac{d D(t)}{d t} & =-r(\beta) D(t)+I_{4}(t) \\
\frac{d E(t)}{d t} & =r(\beta) D(t)-O_{5}(t) \\
\frac{d F(t)}{d t} & =r(\beta) D(t)-O_{6}(t)
\end{aligned}
$$

Black-boxing

$$
\boldsymbol{\square}\left(\square\left(R^{\prime}\right)\right): \mathbb{R}^{Y} \oplus \mathbb{R}^{Y} \rightsquigarrow \mathbb{R}^{Z} \oplus \mathbb{R}^{Z}
$$

$$
\left(c_{Y}, I_{Y}, c_{Z}, o_{Z}\right)
$$

$$
\begin{aligned}
& I_{4}=r(\beta) D \\
& O_{5}=r(\beta) D \\
& O_{6}=r(\beta) D
\end{aligned}
$$

Composing relations

■(■(R))■($\left.\left(^{\prime}\right)\right)$

$$
\left(c_{X}, I_{X}, c_{Y}, O_{Y}\right)\left(c_{Y}, I_{Y}, c_{Z}, O_{Z}\right)
$$

$$
\begin{array}{cl}
I_{1}=r(\alpha) A B & I_{4}=r(\beta) D \\
I_{2}+I_{3}=r(\alpha) A B & O_{5}=r(\beta) D \\
O_{4}=2 r(\alpha) A B & O_{6}=r(\beta) D
\end{array}
$$

Composing relations

■(■(R))■($\left.\left(^{\prime}\right)\right)$

$$
\left(c_{X}, I_{X}, c_{Y}, O_{Y}\right)\left(c_{Y}, I_{Y}, c_{Z}, O_{Z}\right)
$$

$$
\begin{array}{cc}
I_{1}=r(\alpha) A B & I_{4}=r(\beta) D \\
I_{2}+I_{3}=r(\alpha) A B & O_{5}=r(\beta) D \\
O_{4}=2 r(\alpha) A B & O_{6}=r(\beta) D
\end{array}
$$

$$
\begin{aligned}
& C=D \\
& O_{4}=I_{4}
\end{aligned}
$$

Composing relations

■(■(R))■(■(R))

$$
\left(c_{X}, I_{X}, c_{Y}, O_{Y}\right)\left(c_{Y}, I_{Y}, c_{Z}, O_{Z}\right)
$$

$$
\begin{array}{cl}
I_{1}=r(\alpha) A B & I_{4}=r(\beta) D \\
I_{2}+I_{3}=r(\alpha) A B & O_{5}=r(\beta) D \\
O_{4}=2 r(\alpha) A B & O_{6}=r(\beta) D
\end{array}
$$

$$
C=D
$$

$$
2 r(\alpha) A B=r(\beta) D
$$

Composing relations

$\square(■(R)) \square\left(\square\left(R^{\prime}\right)\right): \mathbb{R}^{X} \oplus \mathbb{R}^{X} \rightsquigarrow \mathbb{R}^{z} \oplus \mathbb{R}^{z}$

$$
\left(c_{X}, I_{X}, c_{z}, O_{Z}\right)
$$

$$
\begin{gathered}
I_{1}=r(\alpha) A B \\
I_{2}+I_{3}=r(\alpha) A B \\
2 r(\alpha) A B=r(\beta) C \\
O_{5}=r(\beta) C \\
O_{6}=r(\beta) C .
\end{gathered}
$$

Black-boxing

$$
\left(R R^{\prime}: X \rightarrow Y\right)
$$

$$
\begin{aligned}
& \frac{d A}{d t}=-r(\alpha) A B+I_{1} \\
& \frac{d B}{d t}=-r(\alpha) A B+I_{2}+I_{3} \\
& \frac{d C}{d t}=2 r(\alpha) A B-r(\beta) C \\
& \frac{d E}{d t}=r(\beta) C-O_{5} \\
& \frac{d F}{d t}=r(\beta) C-O_{6}
\end{aligned}
$$

Black-boxing

$\left.\square\left(R R^{\prime}\right)\right): \mathbb{R}^{X} \oplus \mathbb{R}^{X} \rightsquigarrow \mathbb{R}^{z} \oplus \mathbb{R}^{Z}$

$$
\begin{gathered}
I_{1}=r(\alpha) A B \\
I_{2}+I_{3}=r(\alpha) A B \\
2 r(\alpha) A B=r(\beta) C \\
O_{5}=r(\beta) C \\
O_{6}=r(\beta) C .
\end{gathered}
$$

Summary

The fact that black-boxing is accomplished via a functor means that one can compute the steady state behavior of a composite open reaction network by composing the semialgebraic relations characterizing the steady state behaviors of its constituent systems:

$$
\square(\square(R)) \square\left(\square\left(R^{\prime}\right)\right)=\square\left(\square(R) \square\left(R^{\prime}\right)\right)=\square\left(\square\left(R R^{\prime}\right)\right)
$$

This provides a compositional approach to studying both the dynamical and steady state behaviors of open reaction networks.

Thank you!

For more:

- John C. Baez and Blake S. Pollard, A compositional framework for reaction networks, submitted.
- John C. Baez, Brendan Fong and Blake S. Pollard, A compositional framework for Markov processes, Journal of Mathematical Physics.
- Blake S. Pollard, Open Markov processes: A compositional perspective on non-equilibrium steady states in biology, Entropy.
- Blake S. Pollard, A Second Law for open Markov processes, Open Systems and Information Dynamics.

Composition in Dynam

Given open dynamical systems $D: X \rightarrow Y$ on S and $D^{\prime}: Y \rightarrow Z$ on S^{\prime}

with vector fields $v: \mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$ and $v^{\prime}: \mathbb{R}^{S^{\prime}} \rightarrow \mathbb{R}^{S^{\prime}}$ to get an open dynamical system $D D^{\prime}: X \rightarrow Z$ on $S+\gamma S^{\prime}$

we need to cook up a vector field $v^{\prime \prime}: \mathbb{R}^{S+\gamma S^{\prime}} \rightarrow \mathbb{R}^{S+\gamma S^{\prime}}$.

Composition in Dynam

To get a vector field $v^{\prime \prime}: \mathbb{R}^{S+\gamma S^{\prime}} \rightarrow \mathbb{R}^{S+\gamma S^{\prime}}$, first take the inclusion map

$$
\left[j, j^{\prime}\right]: S+S^{\prime} \rightarrow S+y S^{\prime}
$$

and define two maps, $\left[j, j^{\prime}\right]_{*}: \mathbb{R}^{S+S^{\prime}} \rightarrow \mathbb{R}^{S+{ }_{\gamma} S^{\prime}}$ as

$$
\left[j, j^{\prime}\right]_{*}\left(v+v^{\prime}\right)_{\sigma}=\sum_{\left\{\sigma^{\prime}\left|\left[j \cdot j^{\prime}\right]\right|\left(\sigma^{\prime}\right)=\sigma\right\}}\left(v+v^{\prime}\right)_{\sigma^{\prime}}
$$

and $\left[j, j^{\prime}\right]^{*}: \mathbb{R}^{S+\gamma S^{\prime}} \rightarrow \mathbb{R}^{S+S^{\prime}}$ as

$$
\left[j, j^{\prime}\right]^{*}\left(c^{\prime \prime}\right)=c^{\prime \prime} \circ\left[j, j^{\prime}\right]
$$

with $c^{\prime \prime} \in \mathbb{R}^{S+\gamma S^{\prime}}$. We can then define our vector field via the expression

$$
v^{\prime \prime}\left(c^{\prime \prime}\right)=\left[j, j^{\prime}\right]_{*}\left(v+v^{\prime}\right)\left[j, j^{\prime}\right]^{*}\left(c^{\prime \prime}\right)
$$

Semialgebraic relations

A semialgebraic subspace of a vector space is a one defined in terms of polynomials and inequalities.

Semialgebraic relations

A semialgebraic subspace of a vector space is a one defined in terms of polynomials and inequalities.

A semialgebraic relation $A: U \rightsquigarrow V$ is a semialgebraic subspace $A \subseteq U \oplus V$.

Semialgebraic relations

A semialgebraic subspace of a vector space is a one defined in terms of polynomials and inequalities.

A semialgebraic relation $A: U \rightsquigarrow V$ is a semialgebraic subspace $A \subseteq U \oplus V$.

There is a category SemialgRel where objects are real vector spaces V and morphisms are semialgebraic relations.

Semialgebraic relations

A semialgebraic subspace of a vector space is a one defined in terms of polynomials and inequalities.

A semialgebraic relation $A: U \rightsquigarrow V$ is a semialgebraic subspace $A \subseteq U \oplus V$.

There is a category SemialgRel where objects are real vector spaces V and morphisms are semialgebraic relations.

Composition of relations requires that they agree on their overlap.

Semialgebraic relations

A semialgebraic subspace of a vector space is a one defined in terms of polynomials and inequalities.

A semialgebraic relation $A: U \rightsquigarrow V$ is a semialgebraic subspace $A \subseteq U \oplus V$.

There is a category SemialgRel where objects are real vector spaces V and morphisms are semialgebraic relations.

Composition of relations requires that they agree on their overlap.
Given semialgebraic relations $A: U \rightsquigarrow V$ and $B: V \rightsquigarrow W$, their composite $A B: U \rightsquigarrow W$ is given by

$$
A B=\{(u, w): \exists v \in V \text { with }(u, v) \in A \text { and }(v, w) \in B\} .
$$

