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Black-boxing

We saw that there is a functor

� : RxNet→ Dynam,

the gray-boxing functor, sending an open reaction network to the open
dynamical system generated by mass-action kinetics.

Here,
RxNet is the category of open reaction networks and
Dynam is the category of open dynamical systems.

I’ll describe a functor � : Dynam→ Rel sending an open dynamical system
to the space of possible steady state inflows and outflows.
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Black boxing
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Black-boxing
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Black-boxing
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Open reaction networks

Theorem ( Baez, BP. )
There is a category RxNet whose objects are finite sets and whose
morphisms correspond to open reaction networks.

R : X → Y
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Composition of open reaction networks

Given another open reaction network R ′ : Y → Z
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Composition of open reaction networks

To compose R : X → Y and R ′ : Y → Z we first combine them
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Composition of open reaction networks

Then, we identify any species which are in the image of the same point in
Y
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This gives a new open reaction network RR ′ : X → Z .



A category of open dynamical systems

Definition
An open dynamical system D : X → Y on S consists of a cospan of
finite sets
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together with a polynomial vector field v on RS .

Theorem (Baez, P.)
There is a category Dynam where objects are finite sets and morphisms are
isomorphism classes of open dynamical systems.



The gray-boxing functor

Theorem (Baez, P.)
There is a functor � : RxNet→ Dynam sending an open reaction network
to its corresponding open dynamical system generated by the rate
equation.

For open reaction networks R : X → Y and R ′ : Y → Z , the gray-boxing
functor satisfies

�(RR ′) = �(R) �(R ′).



The gray-boxing functor

�(R : X → Y )
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The gray-boxing functor

�(R ′ : Y → Z )
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vD = −r(β)D(t)

vE = r(β)D(t)

vF = r(β)D(t)



Composition in Dynam

�(R : X → Y )�(R ′ : Y → Z )
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Composition in Dynam
�(R : X → Y )�(R ′ : Y → Z )
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The gray-boxing functor
�(RR ′ : X → Z )
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The open rate equation
Let I : R→ RX and O : R→ RY be arbitrary smooth functions of time
specifying the inflows and outflows.
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dA(t)
dt = −r(α)A(t)B(t) + I1(t)

dB(t)
dt = −r(α)A(t)B(t) + I2(t) + I3(t)

dC(t)
dt = 2r(α)A(t)B(t)− O4(t)



The open rate equation

Given an open dynamical system together with specified inflows I ∈ RX

and outflows O ∈ RX , we define the pushforward i∗ : RX → RS by

i∗(I)σ =
∑

{x :i(x)=σ}
Ix

and define o∗ : RY → RS by

o∗(O)σ =
∑

{y :o(y)=σ}
Oy .

We can then write down the open rate equation as

dc(t)
dt = v(c(t)) + i∗(I(t))− o∗(O(t)).



Steady states

A steady state solution of the open rate equation is a concentration
vector c ∈ RS such that

dc
dt = 0.

From the open rate equation

dc
dt = v(c) + i∗(I)− o∗(O)

we see that this implies

v(c) = o∗(O)− i∗(I).

This imposes relations among the steady state concentrations and flows
along the boundary.



Rel

A relation L : U  V is a subspace L ⊆ U ⊕ V .

There is a category Rel where an object is real vector space and a
morphism is a relation between real vector spaces.

Given relations L : U  V and L′ : V  W , their composite LL′ : U  W
is given by

LL′ = {(u,w) : ∃v ∈ V with (u, v) ∈ L and (v ,w) ∈ L′}.

Composition in Rel requires that the subspaces agree on their overlap.



Composition in Rel

Given the relation L : R R2

L = { (w , x , y) | w = y2 }

and the relation L′ : R2  R

L′ = { (x ′, y ′, z) | y ′ = z },

their composite LL′ : R R is

LL′ = { (w , z) | w = z2 }.



Steady state behavior
We characterize the steady state behavior of an open reaction network in
terms of the relation imposed between inputs and outputs.
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Steady state behavior

cX = (c1, c2, c3) ∈ RX , IX = (I1, I2, I3) ∈ RX

cY = c4 ∈ RY , OY = O4 ∈ RY
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(cX , IX , cY ,OY ) ⊆ RX ⊕ RX ⊕ RY ⊕ RY

such that
I1 = r(α)AB

I2 + I3 = r(α)AB

O4 = 2r(α)AB



Steady state behavior
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Steady state behavior
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The black-box functor

Theorem (Baez, P.)
There is a functor

� : Dynam→ Rel

sending an open dynamical system to the relation characterizing its steady
state boundary concentrations and flows.

Theorem (Baez, P.)
Composing the gray-boxing and black-boxing functors gives a functor

RxNet � // Dynam � // Rel

sending an open reaction network to the subspace of possible steady state
boundary concentrations and flows.



The black-box functor

Theorem (Baez, P.)
There is a functor

� : Dynam→ Rel

sending an open dynamical system to the relation characterizing its steady
state boundary concentrations and flows.

Theorem (Baez, P.)
Composing the gray-boxing and black-boxing functors gives a functor

RxNet � // Dynam � // Rel

sending an open reaction network to the subspace of possible steady state
boundary concentrations and flows.



Black-boxing

�(R : X → Y )
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Black-boxing

�(�(R)) : RX ⊕ RX  RY ⊕ RY
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The ‘gray-boxing’ functor

�(R ′ : Y → Z )
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dt = −r(β)D(t) + I4(t)
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Black-boxing
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Composing relations

�(�(R))�(�(R ′))
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Composing relations
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Composing relations
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Composing relations
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Black-boxing
�(RR ′ : X → Y )
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Black-boxing
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Summary

The fact that black-boxing is accomplished via a functor means that one
can compute the steady state behavior of a composite open reaction
network by composing the semialgebraic relations characterizing the steady
state behaviors of its constituent systems:

�(�(R)) �(�(R ′)) = �(�(R)�(R ′)) = �(�(RR ′))

This provides a compositional approach to studying both the dynamical
and steady state behaviors of open reaction networks.



Thank you!

For more:
John C. Baez and Blake S. Pollard, A compositional framework for
reaction networks, submitted.
John C. Baez, Brendan Fong and Blake S. Pollard, A compositional
framework for Markov processes, Journal of Mathematical Physics.
Blake S. Pollard, Open Markov processes: A compositional
perspective on non-equilibrium steady states in biology, Entropy.
Blake S. Pollard, A Second Law for open Markov processes, Open
Systems and Information Dynamics.

https://arxiv.org/pdf/1704.02051.pdf
https://arxiv.org/pdf/1704.02051.pdf
https://arxiv.org/abs/1508.06448
https://arxiv.org/abs/1508.06448
https://arxiv.org/abs/1601.00711
https://arxiv.org/abs/1601.00711
https://arxiv.org/abs/1410.6531


Composition in Dynam
Given open dynamical systems D : X → Y on S and D′ : Y → Z on S ′
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with vector fields v : RS → RS and v ′ : RS′ → RS′ to get an open
dynamical system DD′ : X → Z on S +Y S ′
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we need to cook up a vector field v ′′ : RS+Y S′ → RS+Y S′ .



Composition in Dynam

To get a vector field v ′′ : RS+Y S′ → RS+Y S′ , first take the inclusion map

[j , j ′] : S + S ′ → S +Y S ′

and define two maps, [j , j ′]∗ : RS+S′ → RS+Y S′ as

[j , j ′]∗(v + v ′)σ =
∑

{σ′|[j,j′](σ′)=σ}
(v + v ′)σ′ ,

and [j , j ′]∗ : RS+Y S′ → RS+S′ as

[j , j ′]∗(c ′′) = c ′′ ◦ [j , j ′]

with c ′′ ∈ RS+Y S′ . We can then define our vector field via the expression

v ′′(c ′′) = [j , j ′]∗(v + v ′)[j , j ′]∗(c ′′).



Semialgebraic relations

A semialgebraic subspace of a vector space is a one defined in terms of
polynomials and inequalities.

A semialgebraic relation A : U  V is a semialgebraic subspace
A ⊆ U ⊕ V .

There is a category SemialgRel where objects are real vector spaces V
and morphisms are semialgebraic relations.

Composition of relations requires that they agree on their overlap.

Given semialgebraic relations A : U  V and B : V  W , their composite
AB : U  W is given by

AB = {(u,w) : ∃v ∈ V with (u, v) ∈ A and (v ,w) ∈ B}.
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