Black-boxing open reaction networks

Blake S. Pollard Department of Physics and Astronomy University of California, Riverside

Dynamics, Thermodynamics, and Information Processing in Chemical Networks

> Luxembourg June 13, 2017

Black-boxing

We saw that there is a functor

```
\blacksquare: RxNet \rightarrow Dynam,
```

the gray-boxing functor, sending an open reaction network to the open dynamical system generated by mass-action kinetics.

Here,

- RxNet is the category of open reaction networks and
- Dynam is the category of open dynamical systems.

I'll describe a functor \blacksquare : Dynam \rightarrow Rel sending an open dynamical system to the space of possible *steady state* inflows and outflows.

Black boxing

Black boxing

$$v_A = -r(\alpha)AB$$

$$v_B = -r(\alpha)AB$$

$$v_C = 2r(\alpha)AB - r(\beta)C$$

$$v_E = r(\beta)C$$

$$v_F = r(\beta)C$$

Black boxing

<u>dA</u> dt	=	$-r(\alpha)AB + I_1$
<u>dB</u> dt	=	$-r(\alpha)AB+I_2+I_3$
<u>dC</u> dt	=	$2r(\alpha)AB - r(\beta)C$
<u>dE</u> dt	=	$r(\beta)C - O_5$
dF	_	$r(B) \subset O$

 $\frac{dI}{dt}$ T(p) O_6

Black-boxing

0 =	$-r(\alpha)AB +$	I_1
-----	------------------	-------

$$0 = -r(\alpha)AB + I_2 + I_3$$

 $0 = 2r(\alpha)AB - r(\beta)C$

$$0 = r(\beta)C - O_5$$

$$0 = r(\beta)C - O_6$$

Black-boxing

 $I_{1} = r(\alpha)AB$ $I_{2} + I_{3} = r(\alpha)AB$ $2r(\alpha)AB = r(\beta)C$ $O_{5} = r(\beta)C$ $O_{6} = r(\beta)C.$

Open reaction networks

Theorem (Baez, BP.)

There is a category RxNet whose objects are finite sets and whose morphisms correspond to open reaction networks.

 $R: X \to Y$

Composition of open reaction networks

Given another open reaction network $R' \colon Y \to Z$

Composition of open reaction networks

To compose $R: X \to Y$ and $R': Y \to Z$ we first combine them

Composition of open reaction networks

Then, we identify any species which are in the image of the same point in \boldsymbol{Y}

This gives a new open reaction network $RR': X \rightarrow Z$.

A category of open dynamical systems

Definition

An **open dynamical system** $D: X \rightarrow Y$ on S consists of a cospan of finite sets

together with a polynomial vector field v on \mathbb{R}^{S} .

Theorem (Baez, P.)

There is a category Dynam where objects are finite sets and morphisms are isomorphism classes of open dynamical systems.

The gray-boxing functor

Theorem (Baez, P.)

There is a functor \blacksquare : RxNet \rightarrow Dynam sending an open reaction network to its corresponding open dynamical system generated by the rate equation.

For open reaction networks $R: X \to Y$ and $R': Y \to Z$, the gray-boxing functor satisfies

$$\blacksquare(RR')=\blacksquare(R)\blacksquare(R').$$

The gray-boxing functor

 $\blacksquare (R \colon X \to Y)$

- $v_A = -r(\alpha)A(t)B(t)$
- $v_B = -r(\alpha)A(t)B(t)$
- $v_C = 2r(\alpha)A(t)B(t)$

The gray-boxing functor

 $\blacksquare (R'\colon Y\to Z)$

$$v_D = -r(\beta)D(t)$$

$$v_E = r(\beta)D(t)$$

$$v_F = r(\beta)D(t)$$

Composition in Dynam

 $\blacksquare (R: X \to Y) \blacksquare (R': Y \to Z)$

$$v_B = -r(\alpha)AB$$
 $v_E = r(\beta)D$

 $v_C = 2r(\alpha)AB$ $v_F = r(\beta)D$

Composition in Dynam $(R: X \to Y) = (R': Y \to Z)$

$$v_A = -r(\alpha)AB$$

$$v_B = -r(\alpha)AB$$

 $v_C + v_D = 2r(\alpha)AB - r(\beta)D$ and C = D $v_E = r(\beta)D$

$$v_F = r(\beta)D$$

The gray-boxing functor $\square(RR': X \rightarrow Z)$

$$v_A = -r(\alpha)AB$$

$$v_B = -r(\alpha)AB$$

$$v_{C} = 2r(\alpha)AB - r(\beta)C$$

$$v_E = r(\beta)C$$

 $v_F = r(\beta)C$

The open rate equation

Let $I: \mathbb{R} \to \mathbb{R}^X$ and $O: \mathbb{R} \to \mathbb{R}^Y$ be arbitrary smooth functions of time specifying the **inflows** and **outflows**.

$$\frac{dA(t)}{dt} = -r(\alpha)A(t)B(t) + l_1(t)$$
$$\frac{dB(t)}{dt} = -r(\alpha)A(t)B(t) + l_2(t) + l_3(t)$$
$$\frac{dC(t)}{dt} = 2r(\alpha)A(t)B(t) - O_4(t)$$

The open rate equation

Given an open dynamical system together with specified inflows $I \in \mathbb{R}^X$ and outflows $O \in \mathbb{R}^X$, we define the pushforward $i_* : \mathbb{R}^X \to \mathbb{R}^S$ by

$$i_*(I)_{\sigma} = \sum_{\{x:i(x)=\sigma\}} I_x$$

and define $o_* \colon \mathbb{R}^Y \to \mathbb{R}^S$ by

$$o_*(O)_\sigma = \sum_{\{y:o(y)=\sigma\}} O_y.$$

We can then write down the **open rate equation** as

$$\frac{dc(t)}{dt} = v(c(t)) + i_*(I(t)) - o_*(O(t)).$$

Steady states

A steady state solution of the open rate equation is a concentration vector $c \in \mathbb{R}^{S}$ such that

$$\frac{dc}{dt} = 0.$$

From the open rate equation

$$\frac{dc}{dt} = v(c) + i_*(I) - o_*(O)$$

we see that this implies

$$v(c) = o_*(O) - i_*(I).$$

This imposes relations among the steady state concentrations and flows along the boundary.

A relation $L: U \rightsquigarrow V$ is a subspace $L \subseteq U \oplus V$.

There is a category Rel where an object is real vector space and a morphism is a relation between real vector spaces.

Given relations $L: U \rightsquigarrow V$ and $L': V \rightsquigarrow W$, their composite $LL': U \rightsquigarrow W$ is given by

$$LL' = \{(u, w) \colon \exists v \in V \text{ with } (u, v) \in L \text{ and } (v, w) \in L'\}.$$

Composition in Rel requires that the subspaces agree on their overlap.

Composition in Rel

Given the relation $L \colon \mathbb{R} \rightsquigarrow \mathbb{R}^2$

$$L = \{ (w, x, y) | w = y^2 \}$$

and the relation $L' \colon \mathbb{R}^2 \rightsquigarrow \mathbb{R}$

$$L' = \{ (x', y', z) | y' = z \},\$$

their composite $LL' : \mathbb{R} \rightsquigarrow \mathbb{R}$ is

$$LL' = \{ (w, z) | w = z^2 \}.$$

We characterize the steady state behavior of an open reaction network in terms of the relation imposed between inputs and outputs.

$$\frac{dA(t)}{dt} = -r(\alpha)A(t)B(t) + l_1(t)$$
$$\frac{dB(t)}{dt} = -r(\alpha)A(t)B(t) + l_2(t) + l_3(t)$$
$$\frac{dC(t)}{dt} = 2r(\alpha)A(t)B(t) - O_4(t)$$

$$(c_X, I_X, c_Y, O_Y) \subseteq \mathbb{R}^X \oplus \mathbb{R}^X \oplus \mathbb{R}^Y \oplus \mathbb{R}^Y$$

such that

$$l_1 = r(\alpha)AB$$
$$l_2 + l_3 = r(\alpha)AB$$
$$O_4 = 2r(\alpha)AB$$

$$(c_1, c_2, c_3, l_1, l_2, l_3, c_4, O_4) \subseteq \mathbb{R}^X \oplus \mathbb{R}^X \oplus \mathbb{R}^Y \oplus \mathbb{R}^Y$$

such that

$$l_1 = r(\alpha)AB$$
$$l_2 + l_3 = r(\alpha)AB$$
$$O_4 = 2r(\alpha)AB$$

$$(c_1, c_2, c_3, l_1, l_2, l_3, c_4, O_4)$$

=
 $(A, B, B, r(\alpha)AB, l_2, r(\alpha)AB - l_2, C, 2r(\alpha)AB)$

٠

The black-box functor

```
Theorem (Baez, P.)
```

There is a functor

 $\blacksquare: \texttt{Dynam} \to \texttt{Rel}$

sending an open dynamical system to the relation characterizing its steady state boundary concentrations and flows.

The black-box functor

There is a functor

 $\blacksquare: \texttt{Dynam} \to \texttt{Rel}$

sending an open dynamical system to the relation characterizing its steady state boundary concentrations and flows.

Theorem (Baez, P.)

Composing the gray-boxing and black-boxing functors gives a functor

$$\texttt{RxNet} \xrightarrow{\blacksquare} \texttt{Dynam} \xrightarrow{\blacksquare} \texttt{Rel}$$

sending an open reaction network to the subspace of possible steady state boundary concentrations and flows.

Black-boxing

$$\blacksquare (R \colon X \to Y)$$

$$\frac{dA(t)}{dt} = -r(\alpha)A(t)B(t) + l_1(t)$$
$$\frac{dB(t)}{dt} = -r(\alpha)A(t)B(t) + l_2(t) + l_3(t)$$
$$\frac{dC(t)}{dt} = 2r(\alpha)A(t)B(t) - O_4(t)$$

Black-boxing

 (c_X, I_X, c_Y, O_Y)

such that

 $l_1 = r(\alpha)AB$ $l_2 + l_3 = r(\alpha)AB$ $O_4 = 2r(\alpha)AB$

The 'gray-boxing' functor

$$\blacksquare (R' \colon Y \to Z)$$

$$\frac{dD(t)}{dt} = -r(\beta)D(t) + l_4(t)$$
$$\frac{dE(t)}{dt} = r(\beta)D(t) - O_5(t)$$
$$\frac{dF(t)}{dt} = r(\beta)D(t) - O_6(t)$$

Black-boxing

$$\blacksquare(\blacksquare(R'))\colon \mathbb{R}^Y\oplus\mathbb{R}^Y\rightsquigarrow\mathbb{R}^Z\oplus\mathbb{R}^Z$$

 (c_Y, I_Y, c_Z, O_Z)

 $l_4 = r(\beta)D$ $O_5 = r(\beta)D$ $O_6 = r(\beta)D$

$$\blacksquare(\blacksquare(R))\blacksquare(\blacksquare(R'))$$

$$(c_X, I_X, c_Y, O_Y)(c_Y, I_Y, c_Z, O_Z)$$

$$l_1 = r(\alpha)AB \qquad l_4 = r(\beta)D$$

$$l_2 + l_3 = r(\alpha)AB \qquad O_5 = r(\beta)D$$

$$O_4 = 2r(\alpha)AB \qquad O_6 = r(\beta)D$$

$$\blacksquare(\blacksquare(R))\blacksquare(\blacksquare(R'))$$

$$(c_X, I_X, c_Y, O_Y)(c_Y, I_Y, c_Z, O_Z)$$

$$l_{1} = r(\alpha)AB \qquad l_{4} = r(\beta)D$$
$$l_{2} + l_{3} = r(\alpha)AB \qquad O_{5} = r(\beta)D$$
$$O_{4} = 2r(\alpha)AB \qquad O_{6} = r(\beta)D$$
$$C = D$$
$$O_{4} = l_{4}$$

$\blacksquare(\blacksquare(R))\blacksquare(\blacksquare(R'))$

$$(c_X, I_X, c_Y, O_Y)(c_Y, I_Y, c_Z, O_Z)$$

$$l_{1} = r(\alpha)AB \qquad l_{4} = r(\beta)D$$
$$l_{2} + l_{3} = r(\alpha)AB \qquad O_{5} = r(\beta)D$$
$$O_{4} = 2r(\alpha)AB \qquad O_{6} = r(\beta)D$$
$$C = D$$
$$2r(\alpha)AB = r(\beta)D$$

$\blacksquare(\blacksquare(R))\blacksquare(\blacksquare(R'))\colon \mathbb{R}^X\oplus\mathbb{R}^X\rightsquigarrow\mathbb{R}^Z\oplus\mathbb{R}^Z$

 (c_X, I_X, c_Z, O_Z)

 $I_{1} = r(\alpha)AB$ $I_{2} + I_{3} = r(\alpha)AB$ $2r(\alpha)AB = r(\beta)C$ $O_{5} = r(\beta)C$ $O_{6} = r(\beta)C.$

Black-boxing

 $\blacksquare(RR'\colon X\to Y)$

$$\frac{dA}{dt} = -r(\alpha)AB + I_1$$

$$\frac{dB}{dt} = -r(\alpha)AB + I_2 + I_3$$

$$\frac{dC}{dt} = 2r(\alpha)AB - r(\beta)C$$

$$\frac{dE}{dt} = r(\beta)C - O_5$$

$$\frac{dF}{dt} = r(\beta)C - O_6$$

Black-boxing

 $\blacksquare(\blacksquare(RR')): \mathbb{R}^X \oplus \mathbb{R}^X \rightsquigarrow \mathbb{R}^Z \oplus \mathbb{R}^Z$

 $I_{1} = r(\alpha)AB$ $I_{2} + I_{3} = r(\alpha)AB$ $2r(\alpha)AB = r(\beta)C$ $O_{5} = r(\beta)C$ $O_{6} = r(\beta)C.$

Summary

The fact that black-boxing is accomplished via a functor means that one can compute the steady state behavior of a composite open reaction network by composing the semialgebraic relations characterizing the steady state behaviors of its constituent systems:

$$\blacksquare(\blacksquare(R)) \blacksquare(\blacksquare(R')) = \blacksquare(\blacksquare(R)\blacksquare(R')) = \blacksquare(\blacksquare(RR'))$$

This provides a compositional approach to studying both the dynamical and steady state behaviors of open reaction networks.

Thank you!

For more:

- John C. Baez and Blake S. Pollard, A compositional framework for reaction networks, submitted.
- John C. Baez, Brendan Fong and Blake S. Pollard, A compositional framework for Markov processes, *Journal of Mathematical Physics*.
- Blake S. Pollard, Open Markov processes: A compositional perspective on non-equilibrium steady states in biology, *Entropy*.
- Blake S. Pollard, A Second Law for open Markov processes, *Open Systems and Information Dynamics.*

Composition in Dynam

Given open dynamical systems $D: X \to Y$ on S and $D': Y \to Z$ on S'

with vector fields $v : \mathbb{R}^S \to \mathbb{R}^S$ and $v' : \mathbb{R}^{S'} \to \mathbb{R}^{S'}$ to get an open dynamical system $DD' : X \to Z$ on $S +_Y S'$

we need to cook up a vector field $v'' \colon \mathbb{R}^{S_{+Y}S'} \to \mathbb{R}^{S_{+Y}S'}$.

Composition in Dynam

To get a vector field $v'' \colon \mathbb{R}^{S+_Y S'} \to \mathbb{R}^{S+_Y S'}$, first take the inclusion map

$$[j,j'] \colon S + S' \to S +_Y S'$$

and define two maps, $[j,j']_* \colon \mathbb{R}^{S+S'} \to \mathbb{R}^{S+{}_YS'}$ as

$$[j,j']_*(v+v')_{\sigma} = \sum_{\{\sigma'|[j,j'](\sigma')=\sigma\}} (v+v')_{\sigma'},$$

and $[j,j']^* \colon \mathbb{R}^{S+_YS'} \to \mathbb{R}^{S+S'}$ as

$$[j,j']^*(c'') = c'' \circ [j,j']$$

with $c'' \in \mathbb{R}^{S_{+Y}S'}$. We can then define our vector field via the expression

$$v''(c'') = [j,j']_*(v+v')[j,j']^*(c'').$$

A **semialgebraic subspace** of a vector space is a one defined in terms of polynomials and inequalities.

A **semialgebraic subspace** of a vector space is a one defined in terms of polynomials and inequalities.

A semialgebraic relation $A: U \rightsquigarrow V$ is a semialgebraic subspace $A \subseteq U \oplus V$.

A **semialgebraic subspace** of a vector space is a one defined in terms of polynomials and inequalities.

A semialgebraic relation $A: U \rightsquigarrow V$ is a semialgebraic subspace $A \subseteq U \oplus V$.

There is a category SemialgRel where objects are real vector spaces V and morphisms are semialgebraic relations.

A **semialgebraic subspace** of a vector space is a one defined in terms of polynomials and inequalities.

A semialgebraic relation $A: U \rightsquigarrow V$ is a semialgebraic subspace $A \subseteq U \oplus V$.

There is a category SemialgRel where objects are real vector spaces V and morphisms are semialgebraic relations.

Composition of relations requires that they agree on their overlap.

A **semialgebraic subspace** of a vector space is a one defined in terms of polynomials and inequalities.

A semialgebraic relation $A: U \rightsquigarrow V$ is a semialgebraic subspace $A \subseteq U \oplus V$.

There is a category SemialgRel where objects are real vector spaces V and morphisms are semialgebraic relations.

Composition of relations requires that they agree on their overlap.

Given semialgebraic relations $A: U \rightsquigarrow V$ and $B: V \rightsquigarrow W$, their composite $AB: U \rightsquigarrow W$ is given by

 $AB = \{(u, w) \colon \exists v \in V \text{ with } (u, v) \in A \text{ and } (v, w) \in B\}.$