
Network Theory I:
Electrical Circuits and Signal-Flow Graphs

John Baez, Jason Erbele, Brendan Fong

http://en.wikipedia.org/wiki/Signal-flow_graph

The category with vector spaces as objects and linear maps as
morphisms becomes symmetric monoidal with the usual ⊗.

In quantum field theory, ‘Feynman diagrams’ are pictures of
morphisms in this symmetric monoidal category:

The category with vector spaces as objects and linear maps as
morphisms becomes symmetric monoidal with the usual ⊗.

In quantum field theory, ‘Feynman diagrams’ are pictures of
morphisms in this symmetric monoidal category:

But the category of vector spaces also becomes symmetric
monoidal with direct sum, ⊕, as its ‘tensor product’. Today we
will explore this.

Control theorists use ‘signal-flow graphs’ to describe how signals
flow through a system and interact:

http://en.wikipedia.org/wiki/Signal-flow_graph
http://en.wikipedia.org/wiki/Signal-flow_graph

But the category of vector spaces also becomes symmetric
monoidal with direct sum, ⊕, as its ‘tensor product’. Today we
will explore this.

Control theorists use ‘signal-flow graphs’ to describe how signals
flow through a system and interact:

http://en.wikipedia.org/wiki/Signal-flow_graph
http://en.wikipedia.org/wiki/Signal-flow_graph

Think of a signal as a smooth real-valued function of time:

f : R→ R

We can multiply a signal by a constant and get a new signal:

f

c

cf

We can integrate a signal:

f

∫
∫
f

Here is what happens when you push on a mass m with a
time-dependent force F :

q

∫ v

∫ a

1
m

F

Integration introduces an ambiguity: the constant of integration.
But electrical engineers often use Laplace transforms to write
signals as linear combinations of exponentials

f (t) = e−st for some s > 0

Then they define

(
∫
f)(t) =

e−st

s

This lets us think of integration as a special case of scalar
multiplication! We extend our field of scalars from R to R(s), the
field of rational real functions in one variable s.

Integration introduces an ambiguity: the constant of integration.
But electrical engineers often use Laplace transforms to write
signals as linear combinations of exponentials

f (t) = e−st for some s > 0

Then they define

(
∫
f)(t) =

e−st

s

This lets us think of integration as a special case of scalar
multiplication! We extend our field of scalars from R to R(s), the
field of rational real functions in one variable s.

Let us be general and work with an arbitrary field k . For us, any
signal-flow graph with m input edges and n output edges

will stand for a linear map

F : km → kn

In other words: signal-flow graphs are pictures of morphisms in
FinVectk , the category of finite-dimensional vector spaces over k ...
where we make this into a monoidal category using ⊕, not ⊗.

We build these pictures from a few simple ‘generators’.

Let us be general and work with an arbitrary field k . For us, any
signal-flow graph with m input edges and n output edges

will stand for a linear map

F : km → kn

In other words: signal-flow graphs are pictures of morphisms in
FinVectk , the category of finite-dimensional vector spaces over k ...
where we make this into a monoidal category using ⊕, not ⊗.

We build these pictures from a few simple ‘generators’.

First, we have scalar multiplication:

c

This is a notation for the linear map

k → k
f 7→ cf

Second, we can add two signals:

This is a notation for
+: k ⊕ k → k

Third, we can ‘duplicate’ a signal:

This is a notation for the diagonal map

∆: k → k ⊕ k
f 7→ (f , f)

Fourth, we can ‘delete’ a signal:

This is a notation for the linear map

k → {0}
f 7→ 0

Fifth, we have the zero signal:

This is a notation for the linear map

{0} → k
0 7→ 0

Furthermore, (FinVectk , ⊕) is a symmetric monoidal category.
This means we have a ‘braiding’: a way to switch two signals:

f

g f

g

This is a notation for the linear map

k ⊕ k → k ⊕ k
(f , g) 7→ (g , f)

In a symmetric monoidal category, the braiding must obey a few
axioms. I won’t list them here, since they are easy to find.

http://math.ucr.edu/home/baez/rosetta.pdf

From these ‘generators’:

c

together with the braiding, we can build complicated signal-flow
graphs. In fact, we can describe any linear map F : km → kn this
way!

But these generators obey some unexpected relations:

=
−1

−1

Luckily, we can derive all the relations from some very nice ones!

Theorem (Jason Erbele)

FinVectk is equivalent to the symmetric monoidal category
generated by the object k and these morphisms:

c

where c ∈ k , with the following relations.

Addition and zero make k into a commutative monoid:

=
=

=

Duplication and deletion make k into a cocommutative comonoid:

=
=

=

The monoid and comonoid operations are compatible, as in a
bialgebra:

=

= =

=

http://en.wikipedia.org/wiki/Bialgebra#Formal_definition

The ring structure of k can be recovered from the generators:

bc =
b

c
b + c = b c

1 =
0 =

Scalar multiplication is linear (compatible with addition and zero):

c c
=

c

c =

Scalar multiplication is ‘colinear’ (compatible with duplication and
deletion):

c c
=

c

c =

Those are all the relations we need!

However, control theory also needs more general signal-flow
graphs, which have ‘feedback loops’:

setting

a controller

measured error

system input

b system

system output

csensor

measured output

−1

Feedback is the most important concept in control theory: letting
the output of a system affect its input. For this we should let wires
’bend back’:

These aren’t linear functions — they’re linear relations!

A linear relation F : U V from a vector space U to a vector
space V is a linear subspace F ⊆ U ⊕ V .

We can compose linear relations F : U V and G : V W and
get a linear relation G ◦ F : U W :

G ◦ F = {(u,w) : ∃v ∈ V (u, v) ∈ F and (v ,w) ∈ G}.

A linear relation F : U V from a vector space U to a vector
space V is a linear subspace F ⊆ U ⊕ V .

We can compose linear relations F : U V and G : V W and
get a linear relation G ◦ F : U W :

G ◦ F = {(u,w) : ∃v ∈ V (u, v) ∈ F and (v ,w) ∈ G}.

A linear map φ : U → V gives a linear relation F : U V , namely
the graph of that map:

F = {(u, φ(u)) : u ∈ U}

Composing linear maps becomes a special case of composing linear
relations.

There is a symmetric monoidal category FinRelk with finite-
dimensional vector spaces over the field k as objects and linear
relations as morphisms. This has FinVectk as a subcategory.

Fully general signal-flow graphs are pictures of morphisms in
FinRelk , typically with k = R(s).

A linear map φ : U → V gives a linear relation F : U V , namely
the graph of that map:

F = {(u, φ(u)) : u ∈ U}

Composing linear maps becomes a special case of composing linear
relations.

There is a symmetric monoidal category FinRelk with finite-
dimensional vector spaces over the field k as objects and linear
relations as morphisms. This has FinVectk as a subcategory.

Fully general signal-flow graphs are pictures of morphisms in
FinRelk , typically with k = R(s).

A linear map φ : U → V gives a linear relation F : U V , namely
the graph of that map:

F = {(u, φ(u)) : u ∈ U}

Composing linear maps becomes a special case of composing linear
relations.

There is a symmetric monoidal category FinRelk with finite-
dimensional vector spaces over the field k as objects and linear
relations as morphisms. This has FinVectk as a subcategory.

Fully general signal-flow graphs are pictures of morphisms in
FinRelk , typically with k = R(s).

Jason Erbele showed that besides the previous generators of
FinVectk , we only need two more morphisms to generate all the
morphisms in FinRelk : the ‘cup’ and ‘cap’.

f = g

f g

f = g

f g

These linear relations say that when a signal goes around a bend in
a wire, the signal coming out equals the signal going in!

More formally, the cup is the linear relation

∪ : k ⊕ k {0}

given by:

∪ = {(f , f , 0) : f ∈ k} ⊆ k ⊕ k ⊕ {0}

Similarly, the cap is the linear relation

∩ : {0} k ⊕ k

given by:

∩ = {(0, f , f) : f ∈ k} ⊆ {0} ⊕ k ⊕ k

These make (FinRelk , ⊕) into a ‘dagger-compact category’.

http://en.wikipedia.org/wiki/Dagger_compact_category

More formally, the cup is the linear relation

∪ : k ⊕ k {0}

given by:

∪ = {(f , f , 0) : f ∈ k} ⊆ k ⊕ k ⊕ {0}

Similarly, the cap is the linear relation

∩ : {0} k ⊕ k

given by:

∩ = {(0, f , f) : f ∈ k} ⊆ {0} ⊕ k ⊕ k

These make (FinRelk , ⊕) into a ‘dagger-compact category’.

http://en.wikipedia.org/wiki/Dagger_compact_category

More formally, the cup is the linear relation

∪ : k ⊕ k {0}

given by:

∪ = {(f , f , 0) : f ∈ k} ⊆ k ⊕ k ⊕ {0}

Similarly, the cap is the linear relation

∩ : {0} k ⊕ k

given by:

∩ = {(0, f , f) : f ∈ k} ⊆ {0} ⊕ k ⊕ k

These make (FinRelk , ⊕) into a ‘dagger-compact category’.

http://en.wikipedia.org/wiki/Dagger_compact_category

Theorem (Jason Erbele)

FinRelk is equivalent to the symmetric monoidal category
generated by the object k and these morphisms:

c

where c ∈ k , and an explicit list of relations.

Instead of listing the relations, let me just sketch what comes next!

I have only talked about linear control theory. There is also a
nonlinear version.

In both versions there’s a general issue: engineers want to build
devices that actually implement a given signal-flow graph. One
way is to use electrical circuits. These are described using ‘circuit
diagrams’:

Instead of listing the relations, let me just sketch what comes next!

I have only talked about linear control theory. There is also a
nonlinear version.

In both versions there’s a general issue: engineers want to build
devices that actually implement a given signal-flow graph. One
way is to use electrical circuits. These are described using ‘circuit
diagrams’:

Instead of listing the relations, let me just sketch what comes next!

I have only talked about linear control theory. There is also a
nonlinear version.

In both versions there’s a general issue: engineers want to build
devices that actually implement a given signal-flow graph. One
way is to use electrical circuits. These are described using ‘circuit
diagrams’:

In the linear case, there is bicategory Circ whose morphisms are
circuit diagrams made of resistors, capacitors and inductors.

Thanks to work in progress by Brendan Fong, we know there is a
functor from this bicategory to FinRelk :

Z: Circ → FinRelk

where k = R(s).

This functor says, for any circuit diagram, how the voltages and
currents on the input wires are related to those on the ouput wires.

http://math.ucr.edu/home/baez/Brendan_Fong_Transfer_Report.pdf

In the linear case, there is bicategory Circ whose morphisms are
circuit diagrams made of resistors, capacitors and inductors.

Thanks to work in progress by Brendan Fong, we know there is a
functor from this bicategory to FinRelk :

Z: Circ → FinRelk

where k = R(s).

This functor says, for any circuit diagram, how the voltages and
currents on the input wires are related to those on the ouput wires.

http://math.ucr.edu/home/baez/Brendan_Fong_Transfer_Report.pdf

In the linear case, there is bicategory Circ whose morphisms are
circuit diagrams made of resistors, capacitors and inductors.

Thanks to work in progress by Brendan Fong, we know there is a
functor from this bicategory to FinRelk :

Z: Circ → FinRelk

where k = R(s).

This functor says, for any circuit diagram, how the voltages and
currents on the input wires are related to those on the ouput wires.

http://math.ucr.edu/home/baez/Brendan_Fong_Transfer_Report.pdf

However, we do not get arbitrary linear relations this way. The
space of voltages and currents on n wires:

kn ⊕ kn

is a symplectic vector space, meaning that it’s equipped with a
skew-symmetric nondegenerate bilinear form:

ω((V1, I1), (V2, I2)) = I1 · V2 − I2 · V1

called the symplectic 2-form.

This is similar to how in classical mechanics, the space of positions
and momenta of a collection of particles is a symplectic 2-form on
Rn ⊕ Rn.

The linear relation

F : km ⊕ km kn ⊕ kn

we get from a linear circuit is always a Lagrangian relation,
meaning that

F ⊆ (km ⊕ km)⊕ (kn ⊕ kn)

is a Lagrangian subspace: a maximal subspace on which the
symplectic 2-form vanishes.

Similarly, in classical mechanics, the inital and final positions/
momenta of a collection of particles lie in a Lagrangian
submanifold of Rn ⊕ Rn.

So, we can see the beginnings of an interesting relation between:

control theory

electrical engineering

category theory

symplectic geometry

This should become even more interesting when we study nonlinear
systems. And as we move from the networks important in
human-engineered systems to those important in biology and
ecology, the mathematics should become even more rich!

So, we can see the beginnings of an interesting relation between:

control theory

electrical engineering

category theory

symplectic geometry

This should become even more interesting when we study nonlinear
systems. And as we move from the networks important in
human-engineered systems to those important in biology and
ecology, the mathematics should become even more rich!

