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The category with vector spaces as objects and linear maps as
morphisms becomes symmetric monoidal with the usual ⊗.

In quantum field theory, ‘Feynman diagrams’ are pictures of
morphisms in this symmetric monoidal category:
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But the category of vector spaces also becomes symmetric
monoidal with direct sum, ⊕, as its ‘tensor product’. Today we
will explore this.

Control theorists use ‘signal-flow graphs’ to describe how signals
flow through a system and interact:

http://en.wikipedia.org/wiki/Signal-flow_graph
http://en.wikipedia.org/wiki/Signal-flow_graph


But the category of vector spaces also becomes symmetric
monoidal with direct sum, ⊕, as its ‘tensor product’. Today we
will explore this.

Control theorists use ‘signal-flow graphs’ to describe how signals
flow through a system and interact:

http://en.wikipedia.org/wiki/Signal-flow_graph
http://en.wikipedia.org/wiki/Signal-flow_graph


Think of a signal as a smooth real-valued function of time:

f : R→ R

We can multiply a signal by a constant and get a new signal:

f

c

cf



We can integrate a signal:

f

∫
∫
f



Here is what happens when you push on a mass m with a
time-dependent force F :

q

∫ v

∫ a

1
m

F



Integration introduces an ambiguity: the constant of integration.
But electrical engineers often use Laplace transforms to write
signals as linear combinations of exponentials

f (t) = e−st for some s > 0

Then they define

(
∫
f )(t) =

e−st

s

This lets us think of integration as a special case of scalar
multiplication! We extend our field of scalars from R to R(s), the
field of rational real functions in one variable s.
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Let us be general and work with an arbitrary field k . For us, any
signal-flow graph with m input edges and n output edges

will stand for a linear map

F : km → kn

In other words: signal-flow graphs are pictures of morphisms in
FinVectk , the category of finite-dimensional vector spaces over k ...
where we make this into a monoidal category using ⊕, not ⊗.

We build these pictures from a few simple ‘generators’.
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First, we have scalar multiplication:

c

This is a notation for the linear map

k → k
f 7→ cf



Second, we can add two signals:

This is a notation for
+: k ⊕ k → k



Third, we can ‘duplicate’ a signal:

This is a notation for the diagonal map

∆: k → k ⊕ k
f 7→ (f , f )



Fourth, we can ‘delete’ a signal:

This is a notation for the linear map

k → {0}
f 7→ 0



Fifth, we have the zero signal:

This is a notation for the linear map

{0} → k
0 7→ 0



Furthermore, (FinVectk , ⊕) is a symmetric monoidal category.
This means we have a ‘braiding’: a way to switch two signals:

f

g f

g

This is a notation for the linear map

k ⊕ k → k ⊕ k
(f , g) 7→ (g , f )

In a symmetric monoidal category, the braiding must obey a few
axioms. I won’t list them here, since they are easy to find.

http://math.ucr.edu/home/baez/rosetta.pdf


From these ‘generators’:

c

together with the braiding, we can build complicated signal-flow
graphs. In fact, we can describe any linear map F : km → kn this
way!



But these generators obey some unexpected relations:

=
−1

−1



Luckily, we can derive all the relations from some very nice ones!

Theorem (Jason Erbele)

FinVectk is equivalent to the symmetric monoidal category
generated by the object k and these morphisms:

c

where c ∈ k , with the following relations.



Addition and zero make k into a commutative monoid:

=
=

=



Duplication and deletion make k into a cocommutative comonoid:

=
=

=



The monoid and comonoid operations are compatible, as in a
bialgebra:

=

= =

=

http://en.wikipedia.org/wiki/Bialgebra#Formal_definition


The ring structure of k can be recovered from the generators:

bc =
b

c
b + c = b c

1 =
0 =



Scalar multiplication is linear (compatible with addition and zero):

c c
=

c

c =



Scalar multiplication is ‘colinear’ (compatible with duplication and
deletion):

c c
=

c

c =

Those are all the relations we need!



However, control theory also needs more general signal-flow
graphs, which have ‘feedback loops’:

setting

a controller

measured error

system input

b system

system output

csensor

measured output

−1



Feedback is the most important concept in control theory: letting
the output of a system affect its input. For this we should let wires
’bend back’:

These aren’t linear functions — they’re linear relations!



A linear relation F : U  V from a vector space U to a vector
space V is a linear subspace F ⊆ U ⊕ V .

We can compose linear relations F : U  V and G : V  W and
get a linear relation G ◦ F : U  W :

G ◦ F = {(u,w) : ∃v ∈ V (u, v) ∈ F and (v ,w) ∈ G}.
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A linear map φ : U → V gives a linear relation F : U  V , namely
the graph of that map:

F = {(u, φ(u)) : u ∈ U}

Composing linear maps becomes a special case of composing linear
relations.

There is a symmetric monoidal category FinRelk with finite-
dimensional vector spaces over the field k as objects and linear
relations as morphisms. This has FinVectk as a subcategory.

Fully general signal-flow graphs are pictures of morphisms in
FinRelk , typically with k = R(s).
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Jason Erbele showed that besides the previous generators of
FinVectk , we only need two more morphisms to generate all the
morphisms in FinRelk : the ‘cup’ and ‘cap’.

f = g

f g

f = g

f g

These linear relations say that when a signal goes around a bend in
a wire, the signal coming out equals the signal going in!



More formally, the cup is the linear relation

∪ : k ⊕ k  {0}

given by:

∪ = {(f , f , 0) : f ∈ k} ⊆ k ⊕ k ⊕ {0}

Similarly, the cap is the linear relation

∩ : {0} k ⊕ k

given by:

∩ = {(0, f , f ) : f ∈ k} ⊆ {0} ⊕ k ⊕ k

These make (FinRelk , ⊕) into a ‘dagger-compact category’.

http://en.wikipedia.org/wiki/Dagger_compact_category
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Theorem (Jason Erbele)

FinRelk is equivalent to the symmetric monoidal category
generated by the object k and these morphisms:

c

where c ∈ k , and an explicit list of relations.



Instead of listing the relations, let me just sketch what comes next!

I have only talked about linear control theory. There is also a
nonlinear version.

In both versions there’s a general issue: engineers want to build
devices that actually implement a given signal-flow graph. One
way is to use electrical circuits. These are described using ‘circuit
diagrams’:
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In the linear case, there is bicategory Circ whose morphisms are
circuit diagrams made of resistors, capacitors and inductors.

Thanks to work in progress by Brendan Fong, we know there is a
functor from this bicategory to FinRelk :

Z: Circ → FinRelk

where k = R(s).

This functor says, for any circuit diagram, how the voltages and
currents on the input wires are related to those on the ouput wires.

http://math.ucr.edu/home/baez/Brendan_Fong_Transfer_Report.pdf
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However, we do not get arbitrary linear relations this way. The
space of voltages and currents on n wires:

kn ⊕ kn

is a symplectic vector space, meaning that it’s equipped with a
skew-symmetric nondegenerate bilinear form:

ω((V1, I1), (V2, I2)) = I1 · V2 − I2 · V1

called the symplectic 2-form.

This is similar to how in classical mechanics, the space of positions
and momenta of a collection of particles is a symplectic 2-form on
Rn ⊕ Rn.



The linear relation

F : km ⊕ km  kn ⊕ kn

we get from a linear circuit is always a Lagrangian relation,
meaning that

F ⊆ (km ⊕ km)⊕ (kn ⊕ kn)

is a Lagrangian subspace: a maximal subspace on which the
symplectic 2-form vanishes.

Similarly, in classical mechanics, the inital and final positions/
momenta of a collection of particles lie in a Lagrangian
submanifold of Rn ⊕ Rn.



So, we can see the beginnings of an interesting relation between:

control theory

electrical engineering

category theory

symplectic geometry

This should become even more interesting when we study nonlinear
systems. And as we move from the networks important in
human-engineered systems to those important in biology and
ecology, the mathematics should become even more rich!
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