Network Theory III:

Bayesian Networks, Information and Entropy
John Baez, Brendan Fong, Tobias Fritz, Tom Leinster

Given finite sets X and Y, a stochastic map $f: X \rightsquigarrow Y$ assigns a real number $f_{y x}$ to each pair $x \in X, y \in Y$ in such a way that for any x, the numbers $f_{y x}$ form a probability distribution on Y.

We call $f_{y x}$ the probability of \boldsymbol{y} given \boldsymbol{x}.
So, we demand:

- $f_{y x} \geq 0$ for all $x \in X, y \in Y$,
- $\sum_{y \in Y} f_{y x}=1$ for all $x \in X$.

We can compose stochastic maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ by matrix multiplication:

$$
(g \circ f)_{z x}=\sum_{y \in Y} g_{z y} f_{y z}
$$

and get a stochastic map $g \circ f: X \rightarrow Z$.
We let FinStoch be the category with

- finite sets as objects,
- stochastic maps $f: X \rightsquigarrow Y$ as morphisms.

Every function $f: X \rightarrow Y$ is a stochastic map, so we get

$$
\text { FinSet } \hookrightarrow \text { FinStoch }
$$

Let 1 be your favorite 1-element set. A stochastic map

$$
1 \xrightarrow[\sim]{p} X
$$

is a probability distribution on X.
We call $p: 1 \rightsquigarrow X$ a finite probability measure space.

A measure-preserving map between finite probability measure spaces is a commuting triangle

So, $f: X \rightarrow Y$ sends the probability distribution on X to that on Y :

$$
q_{y}=\sum_{x: f(x)=y} p_{x}
$$

It's a 'deterministic way of processing random data'.

We can compose measure-preserving maps:

So, we get a category FinProb with

- finite probability measure spaces as objects
- measure-preserving maps as morphisms.

Any finite probability measure space $p: 1 \rightsquigarrow X$ has an entropy:

$$
S(p)=-\sum_{x \in X} p_{x} \ln p_{x}
$$

This says how 'evenly spread' p is.
Or: how much information you learn, on average, when someone tells you an element $x \in X$, if all you'd known was that it was randomly distributed according to p.

Flip a coin!

If $X=\{h, t\}$ and $p_{h}=p_{t}=\frac{1}{2}$, then

$$
S(X, p)=-\left(\frac{1}{2} \ln \frac{1}{2}+\frac{1}{2} \ln \frac{1}{2}\right)=\ln 2
$$

so you learn $\ln 2$ nats of information on average, or 1 bit.
But if $p_{h}=1, p_{t}=0$ you learn

$$
S(X, p)=-(1 \ln 1+0 \ln 0)=0
$$

What's so good about entropy? Let's focus on the information loss of a measure-preserving map:

The data processing inequality says that

$$
\operatorname{IL}(f) \geq 0
$$

Deterministic processing of random data always decreases entropy!

Clearly we have

$$
\begin{aligned}
\operatorname{IL}(g \circ f) & =S(X, p)-S(Z, r) \\
& =S(X, p)-S(Y, q)+S(Y, q)-S(Z, r) \\
& =\operatorname{IL}(f)+\operatorname{IL}(g)
\end{aligned}
$$

So, information loss should be a functor from FinProb to a category with numbers $[0, \infty)$ as morphisms and addition as composition.

Indeed there is a category $[0, \infty)$ with:

- one object *
- nonnegative real numbers c as morphisms $c: * \rightarrow *$
- addition as composition.

We've just seen that

$$
\text { IL: FinProb } \rightarrow[0, \infty)
$$

is a functor. Can we characterize this functor?
Yes. The key is that IL is 'convex-linear' and 'continuous'.

We can define convex linear combinations of objects in FinProb. For for any $0 \leq c \leq 1$, let

$$
c(X, p)+(1-c)(Y, q)
$$

be the disjoint union of X and Y, with the probability distribution given by $c p$ on X and $(1-c) q$ on Y.

We can also define convex linear combinations of morphisms.

$$
f:(X, p) \rightarrow\left(X^{\prime}, p^{\prime}\right), \quad g:(Y, q) \rightarrow\left(Y^{\prime}, q^{\prime}\right)
$$

give
$c f+(1-c) g: c(X, p)+(1-c)(Y, q) \rightarrow c\left(X^{\prime}, p^{\prime}\right)+(1-c)\left(Y^{\prime}, q^{\prime}\right)$
This is simply the function that equals f on X and g on Y.

Information loss is convex linear:

$$
\operatorname{IL}(c f+(1-c) g)=c \operatorname{IL}(f)+(1-c) \operatorname{IL}(g)
$$

The reason is that

$$
S(c(X, p)+(1-c)(Y, q))=c S(X, p)+(1-c) S(Y, q)+S_{c}
$$

where

$$
S_{c}=-(c \ln c+(1-c) \ln (1-c))
$$

is the entropy of a coin with probability c of landing heads-up. This extra term cancels when we compute information loss.

FinProb and $[0, \infty)$ are also topological categories: they have topological spaces of objects and morphisms, and the category operations are continuous.

IL: FinProb $\rightarrow[0, \infty)$ is a continuous functor: it is continuous on objects and morphisms.

Theorem (Baez, Fritz, Leinster). Any continuous convex-linear functor

$$
F: \text { FinProb } \rightarrow[0, \infty)
$$

is a constant multiple of the information loss: for some $\alpha \geq 0$,

$$
g:(X, p) \rightarrow(Y, q) \quad \Longrightarrow \quad F(g)=\alpha \operatorname{IL}(g)
$$

The easy part of the proof: show that

$$
F(g)=\Phi(X, p)-\Phi(X, q)
$$

for some quantity $\Phi(X, p)$. The hard part: show that

$$
\Phi(X, p)=-\alpha \sum_{x \in X} p_{x} \ln p_{x}
$$

Two generalizations:

1) There is precisely a one-parameter family of convex structures on the category $[0, \infty)$. Using these we get information loss functors

$$
\mathrm{IL}_{\beta}: \text { FinProb } \rightarrow[0, \infty)
$$

based on Tsallis entropy:

$$
S_{\beta}(X, p)=\frac{1}{\beta-1}\left(1-\sum_{x \in X} p_{x}^{\beta}\right)
$$

which reduces to the ordinary entropy as $\beta \rightarrow 1$.
2) The entropy of one probability distribution on X relative to another:

$$
I(p, q)=\sum_{x \in X} p_{x} \ln \left(\frac{p_{x}}{q_{x}}\right)
$$

is the expected amount of information you gain when you thought the right probability distribution was q and you discover it's really p. It can be infinite!

There is also category-theoretic characterization of relative entropy.

This uses a category FinStat where the objects are finite probability measure spaces, but the morphisms look like this:

We have a measure-preserving map $f: X \rightarrow Y$ equipped with a stochastic right inverse $s: Y \rightsquigarrow X$. Think of f as a 'measurement process' and s as a 'hypothesis' about the state in X given the measurement in Y.

Any morphism in FinStat

$$
\begin{aligned}
f \circ p & =q \\
f \circ s & =1_{Y}
\end{aligned}
$$

gives a relative entropy $S(p, s \circ q)$. This says how much information we gain when we learn the 'true' probability distribution p on the states of the measured system, given our 'guess' $s \circ q$ based on the measurements q and our hypothesis s.

Our hypothesis s is optimal if $p=s \circ q$: our guessed probability distribution equals the true one! In this case $S(p, s \circ q)=0$.

Morphisms with an optimal hypothesis form a subcategory

$$
\text { FP } \hookrightarrow \text { FinStat }
$$

Theorem (Baez, Fritz). Any lower semicontinuous convex-linear functor

$$
F: \text { FinStat } \rightarrow[0, \infty]
$$

vanishing on morphisms in FP is a constant multiple of relative entropy.

The proof is hard! Can you simplify it?

The category FinStoch and its big brother Stoch also appear in the work of Brendan Fong:

- Causal Theories: a Categorical Perspective on Bayesian Networks.

As usual in Bayesian network theory, he starts with a directed acyclic graph G where, intuitively speaking:

- each vertex is a 'variable'
- each directed edge $a \rightarrow b$ is a 'causal relationship': the value of a may affect that of b.

Roughly speaking, starting from a directed acyclic graph G, he forms the category with finite products \mathcal{C}_{G} freely generated by:

- one object for each vertex of G,
- one morphism $f_{b}: a_{1} \times \cdots \times a_{n} \rightarrow b$ whenever a_{i} are all the parents of b :

(and thus $f_{b}: 1 \rightarrow b$ if b has no parents).

This category \mathcal{C}_{G} is the causal theory described by the graph G. A model of this theory in FinStoch is a symmetric monoidal functor

$$
F: \mathcal{C}_{G} \rightarrow \text { FinStoch }
$$

This gives

- a finite set $F(b)$ for each vertex b of the graph
- a probability measure $F\left(f_{b}\right): 1 \rightsquigarrow F(b)$ for each vertex with no parents
- a stochastic map $F\left(f_{b}\right): F\left(a_{1}\right) \times \cdots \times F\left(a_{n}\right) \rightsquigarrow F(b)$ whenever a_{i} are all the parents of b
- and thus a random variable for each vertex
- automatically obeying the 'independence' assumptions we want in Bayesian network theory! If two vertices have no common ancestors, their random variables are stochastically independent.

So: we're starting to see how category theory connects

- signal flow diagrams
- electrical circuit diagrams
- stochastic Petri nets
- chemical reaction networks
- Bayesian networks, entropy and information

These connections can help us develop a unified toolkit for modelling complex systems made of interacting parts... like living systems, and our planet.

But there's a lot of work to do! Please help. Check this out:

The Azimuth Project
www.azimuthproject.org

