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A Petri net is a way of drawing a finite set S of species, a finite
set T of transitions, and maps s, t : T → NS saying how many
times each species appears in the source (input) and target
(output) of each transition:

In this famous example from epidemiology:

S = {susceptible, resistant, infected} T = {infection, recovery}
s(infection) = susceptible + infected t(infection) = 2 infected

s(recovery) = infected t(recovery) = resistant

http://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology#The_SIR_model


A Petri net is actually a way of presenting a symmetric monoidal
category: one that is freely generated by some set S of objects and
some set T of morphisms!

In our example the generating morphisms are:

infection: susceptible + infected → infected + infected

recovery: infected → resistant

where we write the tensor product as +.



Any morphism in the resulting symmetric monoidal category can
be drawn as a ‘Feynman diagram’:



In particle physics we can compute the amplitude for any process
to occur as a sum over Feynman diagrams. Here we can compute
the probability for any process to occur.

To do this, we use an unorthodox analogy between quantum
mechanics and probability theory, where we treat probabilities as
analogous to amplitudes.

Jacob Biamonte and I have a book on this, free online:

• A Course on Quantum Techniques for Stochastic Mechanics.

Stochastic mechanics is a way to borrow math from quantum
mechanics and apply it to stochastic processes.

http://math.ucr.edu/home/baez/stoch_stable.pdf


Suppose we have a system with n possibilities:

X = {1, . . . , n}

In quantum theory we consider quantum states:

ψ : X → C

with ∑
i∈X
|ψi |2 = 1

In probability theory we consider stochastic states:

ψ : X → R

with ∑
i∈X

ψi = 1 and ψi ≥ 0



An operator U : Cn → Cn that sends quantum states to quantum
states is called unitary.

An operator U : Rn → Rn that sends stochastic states to
stochastic states is called stochastic.

Concretely, U is stochastic iff∑
i

Uij = 1 and Uij ≥ 0



An operator H : Cn → Cn for which exp(−itH) is unitary for all
t ∈ R is called self-adjoint.

An operator H : Rn → Rn for which exp(tH) is stochastic for all
t ∈ [0,∞) is called infinitesimal stochastic.

Concretely, H is infinitesimal stochastic iff∑
i

Hij = 0 and Hij ≥ 0 if i 6= j



If H is self-adjoint, we can describe time evolution of quantum
states using Schrödinger’s equation:

d

dt
ψ(t) = −iHψ(t)

If H is infinitesimal stochastic, we can describe time evolultion of
stochastic states using the master equation:

d

dt
ψ(t) = Hψ(t)

Unitary operators have unitary inverses; stochastic operators rarely
have stochastic inverses! So, we only evolve forwards in time in
stochastic physics.



Suppose we have a Petri net:

T
s //

t
// NS

Chemists call an element of NS a complex: it says how many
items of each species we have. For example, if

S = {susceptible, resistant, infected}

then

3 susceptible + 2 resistant + 5 infected ∈ NS



We call the space of functions ψ : NS → R the stochastic Fock
space.

If ψ is a stochastic state and κ ∈ NS is a complex, ψκ ∈ [0, 1] is
the probability that we have exactly κi items of the ith species.

If we choose a rate constant r(τ) > 0 for each transition τ ∈ T
of our Petri net, we can define a Hamiltonian H on the stochastic
Fock space. Then the master equation

d

dt
ψ(t) = Hψ(t)

describes how stochastic states evolve in time.



Let’s see how to define the Hamiltonian in this example:

Here we have just one species and two transitions:

fission: amoeba → 2 amoeba

competition: 2 amoeba → amoeba



Suppose ψn is the probability of having n amoebas. We can
summarize this information in a power series:

Ψ(z) =
∞∑
n=0

ψnz
n

The creation operator a† creates an amoeba:

a†Ψ = zΨ

The annihilation operator a destroys one:

aΨ =
d

dz
Ψ

We have azn = nzn−1 since there are n amoebas to choose from.



We’re used to

aa† − a†a = 1

for indistinguishable bosons. Can this be right for classical objects
if we use probabilities instead of amplitudes?

Yes! There’s one more way to create an amoeba and then kill one,
than to kill one and then create one.

But let’s try some examples.



We would like a Hamiltonian for a process that destroys k
amoebas and creates j of them:

The obvious guess is a†
j
ak . But this is not infinitesimal stochastic!

The right answer has a ‘correction term’:

a†
j
ak − a†

k
ak



H = a† − 1 describes the random ‘creation’ of amoebas. The
master equation

d

dt
Ψ(t) = HΨ(t)

has this solution:

Ψ(t) = et(z−1)Ψ(0)

If we start with the ‘vacuum state’ Ψ(0) = 1, where there are no
amoebas, at time t we have

Ψ(t) =
etz

et
= e−t

∑
n

tn

n!
zn

so the probability of having n amoebas is e−t t
n

n! . This is just what
we expect: a Poisson process.



H = a− a†a describes the random ‘annihilation’ of amoebas.

Using this Hamiltonian, the master equation predicts that the
expected number of amoebas decays exponentially. Again, this is
just right.



The Petri net we care about has two transitions: fission and
competition:

So, if these have rate constants α and β, we get

H = α(a†
2
a− a†a) + β(a†a2 − a†

2
a2)



Here we can show that in the ‘classical limit’ where ψn is very
sharply peaked near some very large number, the expected number
of amoebas:

〈N(t)〉 =
∑
n

nψn(t)

obeys the logistic equation:

d

dt
〈N(t)〉 = α〈N(t)〉 − β〈N(t)〉2

http://math.ucr.edu/home/baez/networks/networks_7.html


In fact, for any Hamiltonian that is a linear combination of terms
like this:

a†
j
ak − a†

k
ak

it is easy to write a differential equation describing how the
expected number of particles 〈N(t)〉 changes with time in the
classical limit. This is called the ‘rate equation’.

http://math.ucr.edu/home/baez/networks/networks_3.html


Moreover, we can always express the time evolution operator
exp(tH) as a sum over Feynman diagrams:

All this easily generalizes to Petri nets with more than one species.



In some ways stochastic mechanics works better than quantum
mechanics! It might seem hard to find a stationary state

HΨ = 0

for our Hamiltonian

H = α(a†
2
a− a†a) + β(a†a2 − a†

2
a2)

describing amoeba fission and competition. But we can do it using
the Anderson–Craciun–Kurtz theorem.

http://math.ucr.edu/home/baez/networks/networks_9.html


First, find a stationary solution of the rate equation:

d

dt
〈N(t)〉 = α〈N(t)〉 − β〈N(t)〉2

In our case this easy:

α〈N(t)〉 − β〈N(t)〉2 = 0

〈N(t)〉 = α/β

Then form the ‘coherent state’ where the expected number of
amoebas takes this value:

Ψ =
e(α/β)z

eα/β
=

1

eα/β

∞∑
n=0

(α/β)n

n!
zn

The Anderson–Craciun–Kurtz theorem implies HΨ = 0!

http://math.ucr.edu/home/baez/networks/networks_9.html


Anderson, Craciun and Kurtz are chemists.

So, instead of Petri nets they use an equivalent formalism,
‘reaction networks’. Here we take our Petri net:

T
s //

t
// NS

and draw a directed graph with:

I transitions τ ∈ T as edges,

I complexes in the image of s or t as vertices.

http://arxiv.org/abs/0803.3042


For example, this Petri net:

corresponds to this reaction network:

amoeba

fission

66amoeba + amoeba

competition

vv



The Anderson–Craciun–Kurtz theorem, together with the
‘deficiency zero theorem’, says that:

I there exist nonzero equilibrium solutions of the rate equation

and

I every such equilibrium solution gives a coherent state Ψ in the
stochastic Fock space obeying HΨ = 0

if the reaction network is ‘weakly reversible’ and has ‘deficiency
zero’.



A reaction network is weakly reversible if for any edge (that is,
transition):

κ
τ−→ κ′

there is a directed path of edges going back:

κ′
τ0−→ κ1

τ1−→ · · · · · · τn−1−→ κn
τn−→ κ



The deficiency of a reaction network is:

I its number of connected components (as a graph)

I minus its number of vertices

I plus the dimension of the subspace spanned by vectors

t(τ)− s(τ) ∈ NS ⊆ RS

where τ ranges over all transitions in T .



For example, this reaction network is weakly reversible:

amoeba

fission

992 amoeba

competition

ww

It has:

I 1 connected component,

I 2 vertices,

I and the dimension of the subspace spanned by vectors

2 amoeba - amoeba, amoeba - 2 amoeba

is 1.

Thus its deficiency is 1− 2 + 1 = 0, and the theorems apply!



In summary:

1. We are seeing chemists prove highly nontrivial theorems about
stochastic processes described by free symmetric monoidal
categories where the generating morphisms are assigned ‘rate
constants’ !

2. These results have applications not just in chemistry but also
population biology, epidemiology and evolutionary game
theory.

3. The mathematical context for this requires generalizing
Feynman diagrams from quantum mechanics to stochastic
mechanics. So: applied category theory of a new kind!


