## Characterizations of Shannon and Rényi entropy

Tobias Fritz

# NIMBioS, April 2015

Entropy and Information in Biological Systems

#### Shannon entropy

Let  $p: S \rightarrow [0,1]$  is a probability distribution on a finite set S.

**Shannon entropy** is defined to be

$$H(p) := -\sum_{i \in S} p(i) \log(p(i)).$$

Possible interpretations:

- H(p) measures the **amount of randomness** in p.
- ► H(p) measures the amount of information that we gain when learning a particular i ∈ S.
- The exponentiated entropy  $e^{H(p)}$  measures the **effective size** of p.
- ► H(p) measures the compressibility of a sequence of elements sampled from p.

## Example: relative frequencies of letters in English



English has an entropy of about

 $2.9~{\rm nats}\approx 4.1~{\rm bits}$ 

per letter. BUT: this incorrectly ignores correlations between subsequent letters. Taking these into account results in a much lower value. English text can be compressed to a fraction of its length!

# Why Shannon entropy?

Why do we use Shannon entropy as a measure of information?

In information theory applications, the answer is given by the **asymptotic equipartition property:** 

• There is  $T \subseteq S^n$  with

 $|T| \leq e^{n(H(p)+\varepsilon)}$ 

such that sampling *n* times from *p* yields an element of *T* with probability  $> 1 - \varepsilon$ , and  $\varepsilon \to 0$  as  $n \to \infty$ .

- ➤ T is the typical set whose size is governed by the entropy. Basic idea: in n coin flips, we expect roughly <sup>n</sup>/<sub>2</sub> heads and <sup>n</sup>/<sub>2</sub> tails. Sequences which strongly deviate from this are "untypical".
- H(p) is the smallest number with the above property.
- ► This is Shannon's source coding theorem on compressibility.

# Rényi entropies I

This explains why Shannon entropy is so ubiquitous in information theory. But could other measures of information be useful in other contexts?

 $\blacktriangleright$  For  $\beta \in [0,\infty],$  the Rényi entropy of order  $\beta$  is given by

$$H_{eta}(p) = rac{1}{1-eta} \log \left( \sum_{i \in S} p_i^{eta} 
ight).$$

- ▶ The scaling factor is conventional: it makes  $H_\beta$  nonnegative for all  $\beta$  and ensures  $H_\beta(u_n) = \log n$ , where  $u_n$  is the uniform distribution on an *n*-element set.
- The main property which the Rényi entropies have in common with Shannon entropy is additivity:

$$H_{\beta}(p \times r) = H_{\beta}(p) + H_{\beta}(r).$$

### Rényi entropies II

Interesting special cases:

For β = 0, we obtain the max entropy, which is the cardinality of the support of p:

$$H_0(p) = \log |\{ i \in S \mid p(i) > 0 \}|.$$

• For  $\beta = 1$ , we recover Shannon entropy:

$$H_1(p) = \lim_{\beta \to 1} H_\beta(p)$$
  
=  $\frac{d}{d\beta} \left( \frac{1}{1-\beta} \log \left( \sum_i p(i)^\beta \right) \right)_{\beta=1} = -\sum_i p(i) \log p(i).$ 

• For  $\beta = \infty$ , we obtain the **min entropy**:

$$H_{\infty}(p) = -\log \max_{i} p(i) = \log \min_{i} \frac{1}{p(i)}$$

## Rényi entropies III

The partition function

$$Z_{p}(\beta) = \sum_{i \in S} p(i)^{\beta} = e^{(1-\beta)H_{\beta}(p)}$$

provides an alternative point of view on the Rényi entropies.

- ► Knowing the partition function lets us recover p up to permutations of the outcomes i ∈ S.
- So if we know all the Rényi entropies, we also know p up to permutations.
- This is one way to explain why the Rényi entropies are useful: every other invariant quantity can be expressed in terms of the H<sub>β</sub>'s.

# The chain rule I

Consider an ecosystem inhabited by taxonomic families  $i \in F$  with relative abundances p(i). In each family, there are species  $j \in S_i$  with relative abundances r(j|i). We get a taxonomic tree labelled by relative frequencies like this:



So each q(-|i) is a probability distribution itself. But the *overall* relative abundance of species j of family i is given by

$$(r \circ p)(i,j) = p(i) \cdot r(j|i).$$

# The chain rule II

The Shannon entropy as a diversity measure has the following appealing property:

$$H(r \circ p) = H(p) + \sum_{i} p_i H(r(-|i)).$$

- In Shannon's own words: if a choice is broken down into two successive choices, the original H should be the weighted sum of the individual values of H [weighted by the relative frequency with which each choice occurs].
- ► Known under various names such as **chain rule**, **glomming formula**, etc.
- This is a surprising property of Shannon entropy not satisfied by the other Rényi entropies.

## Faddeev's characterization

#### Theorem (Faddeev 1956)

The chain rule, together with permutation invariance and continuity, characterize Shannon entropy up to a constant multiple.

- So if you want your measure of information to satisfy the chain rule, you are essentially forced to use Shannon entropy!
- In 2011, Baez, Fritz and Leinster reformulated this characterization in terms of three very natural axioms on the change of information under deterministic processing.
- ► There are intriguing connections to group cohomology.

## The minimal requirements I

What are minimal requirements that we could impose on a measure of information?

It should be additive under product measures, i.e. the amount of information in p × q should be the sum of the amount of information in p and q individually,

$$H(p \times r) = H(p) + H(r).$$

- If p(i) > p(j), then moving a bit of weight from p(i) to p(j) makes the distribution unambiguously more random. ⇒ The measure of information should not decrease under this operation.
- ► This is equivalent to postulating that if p majorizes r, then H(p) ≤ H(r).

#### The minimal requirements II

- ▶ All the Rényi entropies  $H_\beta$  satisfy both of these properties.
- ► So do all positive linear combinations of Rényi entropies.
- More generally, so do all integrals of Rényi entropies, i.e. information measures of the form

$$p\longmapsto \int_0^\infty H_\beta(p) f(\beta) \,\mathrm{d}\beta$$

for some nonnegative weight function (measure) f.

Conjecture (Fritz 2015)

Every measure of information satisfying both properties is of this form.