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Shannon entropy

Let p : S → [0, 1] is a probability distribution on a finite set S.

I Shannon entropy is defined to be

H(p) := −
∑
i∈S

p(i) log(p(i)).

Possible interpretations:

I H(p) measures the amount of randomness in p.

I H(p) measures the amount of information that we gain when
learning a particular i ∈ S.

I The exponentiated entropy eH(p) measures the effective size of p.

I H(p) measures the compressibility of a sequence of elements
sampled from p.



Example: relative frequencies of letters in English

English has an entropy of about

2.9 nats ≈ 4.1 bits

per letter. BUT: this incorrectly ignores correlations between subsequent
letters. Taking these into account results in a much lower value. English
text can be compressed to a fraction of its length!

http://languagelog.ldc.upenn.edu/myl/Shannon1950.pdf


Why Shannon entropy?
Why do we use Shannon entropy as a measure of information?

In information theory applications, the answer is given by the
asymptotic equipartition property:

I There is T ⊆ Sn with

|T | ≤ en(H(p)+ε)

such that sampling n times from p yields an element of T with
probability > 1− ε, and ε→ 0 as n→∞.

I T is the typical set whose size is governed by the entropy. Basic
idea: in n coin flips, we expect roughly n

2 heads and n
2 tails.

Sequences which strongly deviate from this are “untypical”.

I H(p) is the smallest number with the above property.

I This is Shannon’s source coding theorem on compressibility.

https://en.wikipedia.org/wiki/Shannon%27s_source_coding_theorem


Rényi entropies I
This explains why Shannon entropy is so ubiquitous in information theory.
But could other measures of information be useful in other contexts?

I For β ∈ [0,∞], the Rényi entropy of order β is given by

Hβ(p) = 1
1− β log

∑
i∈S

pβi

 .
I The scaling factor is conventional: it makes Hβ nonnegative for all β

and ensures Hβ(un) = log n, where un is the uniform distribution on
an n-element set.

I The main property which the Rényi entropies have in common with
Shannon entropy is additivity:

Hβ(p × r) = Hβ(p) + Hβ(r).



Rényi entropies II
Interesting special cases:

I For β = 0, we obtain the max entropy, which is the cardinality of
the support of p:

H0(p) = log |{ i ∈ S | p(i) > 0 }|.

I For β = 1, we recover Shannon entropy:

H1(p) = lim
β→1

Hβ(p)

= d
dβ

(
1

1− β log
(∑

i
p(i)β

))
β=1

= −
∑

i
p(i) log p(i).

I For β =∞, we obtain the min entropy:

H∞(p) = − log max
i

p(i) = log min
i

1
p(i)



Rényi entropies III

The partition function

Zp(β) =
∑
i∈S

p(i)β = e(1−β)Hβ(p)

provides an alternative point of view on the Rényi entropies.

I Knowing the partition function lets us recover p up to permutations
of the outcomes i ∈ S.

I So if we know all the Rényi entropies, we also know p up to
permutations.

I This is one way to explain why the Rényi entropies are useful: every
other invariant quantity can be expressed in terms of the Hβ’s.



The chain rule I
Consider an ecosystem inhabited by taxonomic families i ∈ F with
relative abundances p(i). In each family, there are species j ∈ Si with
relative abundances r(j |i). We get a taxonomic tree labelled by relative
frequencies like this:

p(1)

r(1|1)

. . .

r(m1|1)

. . .

p(n)

r(1|n)

. . .

r(mn|n)

So each q(−|i) is a probability distribution itself. But the overall relative
abundance of species j of family i is given by

(r ◦ p)(i , j) = p(i) · r(j |i).



The chain rule II

The Shannon entropy as a diversity measure has the following appealing
property:

H(r ◦ p) = H(p) +
∑

i
piH(r(−|i)).

I In Shannon’s own words: if a choice is broken down into two
successive choices, the original H should be the weighted sum of the
individual values of H [weighted by the relative frequency with
which each choice occurs].

I Known under various names such as chain rule, glomming
formula, etc.

I This is a surprising property of Shannon entropy not satisfied by the
other Rényi entropies.

http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf


Faddeev’s characterization

Theorem (Faddeev 1956)
The chain rule, together with permutation invariance and continuity,
characterize Shannon entropy up to a constant multiple.

I So if you want your measure of information to satisfy the chain rule,
you are essentially forced to use Shannon entropy!

I In 2011, Baez, Fritz and Leinster reformulated this characterization
in terms of three very natural axioms on the change of information
under deterministic processing.

I There are intriguing connections to group cohomology.

http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=7756&option_lang=eng
http://arxiv.org/abs/1106.1791
http://arxiv.org/abs/math/0008089


The minimal requirements I

What are minimal requirements that we could impose on a measure of
information?

I It should be additive under product measures, i.e. the amount of
information in p × q should be the sum of the amount of
information in p and q individually,

H(p × r) = H(p) + H(r).

I If p(i) > p(j), then moving a bit of weight from p(i) to p(j) makes
the distribution unambiguously more random. =⇒ The measure of
information should not decrease under this operation.

I This is equivalent to postulating that if p majorizes r , then
H(p) ≤ H(r).

https://en.wikipedia.org/wiki/Majorization#Equivalent_conditions
https://en.wikipedia.org/wiki/Majorization


The minimal requirements II

I All the Rényi entropies Hβ satisfy both of these properties.

I So do all positive linear combinations of Rényi entropies.

I More generally, so do all integrals of Rényi entropies, i.e. information
measures of the form

p 7−→
∫ ∞

0
Hβ(p) f (β) dβ

for some nonnegative weight function (measure) f .

Conjecture (Fritz 2015)
Every measure of information satisfying both properties is of this form.

http://perimeterinstitute.ca/personal/tfritz/ordered_commutative_monoids.pdf

