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Translating Information Theory to Information Production

"God’s View": information theory metric I(X;Y,Z) assumes
knowledge of joint distribution of all system variables p(X,Y,Z)

"data scientist’s view": by contrast, in science, that is what we are
trying to figure out, ideally through an efficient sampling and
statistical inference process.

"a bug’s view": intuitively a bacterium seems to contain
"information", but the exact mapping to classic information theory
is non-trivial.

Statistical inference provides a nice bridge between "God’s View" and
a "bug’s view", where we can look carefully at the process of
information production.
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Replication Factor Sampling

say we have a population of elements G ∈ {g1,g2, ...} with initial
population values {p1,p2, ...}, that undergo a sequence of
replication rounds each with replication factors {f1(t), f2(t), ...}.
Then after time steps t1, t2, ...tn the population for gi will be:

pi(tn) = pi(t0)f1(t1)f1(t2)...f1(tn)

say for a given gi , the fi(t) are drawn from the same distribution
("independent and identically distributed", IID). If we want an
"average" for this process with a guaranteed convergence, we
must convert the product into a sum via L = logF . Then the Law
of Large Numbers guarantees the sample average

L(gi)=
1
n
[log fi(t1)+ log fi(t2)+ ...+ log fi(tn)]→E(L(gi)) in probability
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Example: Bayesian Inference

define our elements to be likelihood models ψi(X)≡ p(X |ψi) for
some observable X .

now draw an IID sample ~X n = {X1,X2, ...Xn}.
define "replication factors" fi(tj) = p(Xj |ψi)

then the posterior probability of a model given the observations is

p(ψi |~X n) =
p(ψi)p(~X n|ψi)

∑j p(ψj)p(~X n|ψj)
=

p(ψi)enL(ψi)

∑j p(ψj)enL(ψj)

the empirical log-likelihoods L(ψi) are a sufficient statistic for this
process.

define the empirical information as the increase (or decrease!) in
prediction power for the observable achieved by model ψ relative
to the marginal distribution p(X):

Ie(ψ) = L(ψ)−L(p)
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Mutual Information: the Big Picture

define Ω as the true (but unknown) distribution of X , with prior
distribution p(Ω).

for a specific inference problem Ω= ω∗, repeatedly draw
samples ~X t ,~X n from it, to quantify how much we learn about the
observable X from a training sample ~X t .

say we compute the equation for I(~X t ;X) on these data, what will
this give us?
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Mutual Information: the Big, Big Picture

by definition I(~X t ;X |Ω= ω∗) = I(~X t ;X |Ω) = 0. The ~X t ;X are
"conditionally independent given Ω".

the definition of mutual information only applies over the complete
joint distribution of p(Ω,X), the "big, big picture" over all possible
universes Ω.

a single instance of inference Ω= ω∗ is a "little picture" of this
specific universe ω∗.

is there a way to estimate the "big picture" information I(~X t ;X)
from a "little picture" sample for a single instance of inference
Ω= ω∗?
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Empirical Information: the Little Picture

Say we train an inference process Φ with training data ~X t , so its
resulting prediction is Φ(X |~X t).

Consider the expectation of Ie over all possible Ω,~X t ,~X n:

E(Ie(Φ(X |~X t))) = E(L(Φ(X |~X t)))−E(L(p(X)))

= H(X)−H(X |~X t)−E~X t (D(p(X |~X t)||Φ(X |~X t)))

= I(X ;~X t)−E~X t (D(p(X |~X t)||Φ(X |~X t)))

where D(ω||ψ)≥ 0 is the relative entropy, and vanishes iff
ω(X) = ψ(X) everywhere.

sampleable I: we can measure Ie on any inference problem, and
its average over many problems converges to mutual information.
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Biological Evolution

likelihood of the observations p(X |ψi) ∈ [0,1]→ fitness
fi(p(t))≥ 0, which can be greater than 1, and can change
depending on the total population distribution p(t).

Bayes’ Law→ Discrete Replicator Equation (Harper 2009)

pi(t1) =
pi(t0)fi(t1)

∑j pj(t0)fj(t1)

analogous extension to "multiple observations" {t1, t2, ..., tn}

pi(tn) =
pi(t0)fi(t1)fi(t2)...fi(tn)

∑j pj(t0)fj(t1)fj(t2)...fj(tn)
=

pi(t0)enL(gi)

∑j pj(t0)enL(gj)

Again the empirical metrics L/Ie are the sufficient statistic for this
sampling process.
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Local-Gradient Information Evolving Machine

two basic ingredients:
place your bets: predictions of what’s going to "replicate best";
draw a test sample of empirical replication factors.

hill climbing (in the Fisher/Price sense): population tends to shift
towards gi with highest f ,L, Ie.

although this model is general, for most systems, high rate of
diffusion means information destroyed as fast as it’s produced.

strictly empirical, local process limited by finite sample of
elements with p(gi)> 0, which may well not include g∗ with
maximum fitness.

"tunneling problem": if path to g∗ poses an "activation barrier"
(reduced fitness relative to current f ), transition rate to g∗ will be
exponentially slow.
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Entropic Limits of IEMs: Empirical Information

model selection is the process of finding model ψ∗ that
maximizes some metric f (~X t |Ψ= ψ∗)≥ f (~X t |Ψ).

Just "hill-climbing" by another name (local or global)?

Many (e.g. in Computer Science) would regard this as a valid,
general framework.

maximum likelihood (ML) is equivalent to using Ie(Ψ) as the
model selection metric.

Many other metrics (e.g. k-means) can be shown to be equivalent
to this metric.

Can explicit definition of IEM sampling process shed light on
limitations of ML?
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When is "Prediction Power" Predictive?

the claim that Ie(Ψ) measures future prediction power depends
on the Law of Large Numbers guarantee that for one model Ψ

p

(
|L(Ψ)−E(L(Ψ))| ≥

√
Var(L(Ψ))

nε

)
≤ ε

but if we select from a huge effective number of models Ψ for
maximum L(Ψ), we expect to find big deviations from E(L(Ψ)).

ML "corrections" like the Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC) etc. help stave off some
forms of this overfitting (number of degrees of freedom) but not
others.
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BIC Does Not Eliminate Overfitting

Draw three observations from a unit normal, choose N(µ∗,σ∗) with
maximum BIC, measure L on training vs. test sample:
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Optimal Inference

What modeling procedure Φ(X |~X t) will maximize our expectation
prediction power? Recall

E(Ie(Φ(X |~X t))) = I(X ;~X t)−E~X t (D(p(X |~X t)||Φ(X |~X t)))

maximized by the posterior likelihood (PL)

Φ(X |~X t) = p(X |~X t) = ∑
φ

p(φ |~X t)p(X |φ)

where p(φ |~X t) are just the posterior probabilities from Bayes’
Law.

any attempt to reduce entropy of Φ below that of the PL will
degrade prediction power.
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Better Prediction Power by Avoiding Overfitting
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Training Data vs. Test Data

The classic "last line of defense" against overfitting is to separate
the data into training data (used to train the model) and test data
(used to measure the model’s prediction power).

Is there a valid training + test procedure where every data point is
used both to train the model and to test the model (i.e. compute
an unbiased measure of the model’s prediction power)?
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Forward Log-Likelihood

Yes, the posterior likelihood provides exactly this procedure: at
each step of the observation process, it uses the previous ~X i

observations to predict the likelihood of the next observation Xi+1.

define forward log-likelihood as

Lf (Φ) =
1
n

n

∑
i=i

logΦ(Xi |~X i−1)

averages over the model’s gradually improving prediction power
and thus "lags" its true final prediction power.

Note, by the chain rule this is a guaranteed valid way of factoring
the total joint probability of the observations:

logp(~X n|Φ) = nLf (Φ)
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Entropic Limits of IEMs: Potential Information

Generally should assume IEM actual sample {ψi}|p(ψi)> 0 may
not include true distribution ω .

Bayesian relativism: in that case, computed p(ψi |~X t) will be off
by unknown factor E, so strictly speaking all we can calculate
accurately are posterior odds ratio p(ψi |~X t)/p(ψj |~X t).

However, the maximum prediction power possible for the
observable can be estimated from its empirical entropy He. So we
define the potential information Ip as how far our current model Ψ
falls short of that bound

Ip =−He−L

and more importantly get confidence bounds for our sample.

Again, a Law of Large Numbers convergence guarantee

Ip→ D(ω||Ψ) in probability
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Empirical Density

Concretely, "empirical entropy" means computing a model-free
density estimator, via sampling

He =
1
n ∑

i
− logρe(Xi)→−E(logω(X)) in probability

typically estimate ρe(X) in higher dimensional spaces by
measuring volume containing k-nearest neighbors (k-NN).

Can a model ever exceed the prediction power of this empirical
density ρe(X)?
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Model Information

No, for large n→ ∞ (assuming a good ρe estimator).

Ip→ D(ω||Ψ)≥ 0

But initially, it is possible. Define the model information as

Im(Φ) =
1
n ∑

i
log

Φ(Xi |~X i−1)

ρe(Xi |~X i−1)
= Lf (Φ)− logρf

Im > 0 is what we intuitively mean by "prediction value", i.e. the
model tells us more than what we already knew empirically, via
"better interpolation and extrapolation".
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Model Information of the Normal PL
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Ie, Ip, Im Partitioning
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Example: Biological Sequences

consider case where the observable X is itself a high-dimensional
vector (e.g. protein sequence).

naive k-NN empirical entropy estimator He based on short word
length will outperform long word length (due to insertions /
deletions not handled by naive estimator).

identifies words with high potential information
Ip(p) =−He−L(p) relative to marginal distribution p(W).

convert Ip→ Ie by applying mutation model ψ .

this is exactly what the standard BLAST algorithm actually
computes, with the main difference that they don’t call it He, Ip, Ie.
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"Ip Tunneling" Information Evolving Machine

computes Ie just like local IEM.

computes lower bound on Ip.

if significant Ip detected, transition to "model extension" cycle
where new model terms added either by search or interpolation /
extrapolation.

new model extensions given small initial prior, but can rise by
better predicting subsequent observations.

Not Model Selection, because extensions can only rise from
"insignificant" to "dominant" on independent observations.

has the potential to "tunnel" rapidly to true distribution ω via direct
detection and modeling of Ip.

of course, observed process may try to make Ip appear to be zero
by pseudo-randomizing its output (encryption).
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Disinformation

define disinformation as reduction in an IEM Φ ’s subsequent
prediction power due to sending it a previous signal.
Two part process:

initial deception signal: Φ observes D (sent by attacker).

empirical exploit: measure reduction in prediction power on
subsequent observations (the exploit sample):

Id = Ie(Φ)− Ie(Φ|D)
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Example: Bulk Mail Investment Con

target: consider target IEM to be individual investor Φ predicting
p(X = win) for whether a particular investment will "win" (e.g.
"stock market will go up next week").

initial deception signal: starting with a large number of addresses
(say 10,000), send half prediction that stock market will go up
next week, other half down. Next week, reduce to addresses that
got the correct prediction. Repeat 5 times.

exploit: for the subset that received 5 correct predictions, now ask
them to pay for your next prediction.

disinformation metric: total money you receive, since your
prediction actually has zero value. Note that disinformation for the
target is information for the attacker.

note: classic example of Model Selection
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Example: Biological Species vs. Species

target: set of all genotypes in one species Φ is a local-IEM.

attacker: local-IEM for second species Δ.

initial deception signal: say Δ is a non-poisonous butterfly
species that mimics coloration of a poisonous butterfly species.

exploit: say Φ is a bird species that predates on butterflies. The
exploit sample will be its frequency of predation on species Δ (vs.
non-mimic butterflies).

disinformation metric: for local-IEM, Ie proxy is fitness. So
disinformation is reduction in Φ ’s fitness due to loss of a food
source. Again, counts as increased information for Δ.
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IEM vs. IEM Dynamic

when payoffs for two IEMs in an evolutionary game are opposed,
selection on "attacker" IEM Δ for increased empirical information,
will induce disinformation on "target" IEM Φ (reduced fitness).

in general, selection on set of possible "signal + exploit"
behaviors will select for control signals, i.e. where Δ can most
successfully induce a favorable (exploitable) target state.
disinformation attack targeting a high fitness value feature τ will
tend to induce many rounds of an arms race between Δ,Φ.

for Φ, strong negative selection for retaining the original function
of τ , plus positive selection for escaping the specific
disinformation attack.
for Δ, positive selection for beating the latest escape and
regaining a successful disinformation attack.
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What is the value of information in EGT?

the best strategies in the field, e.g. TFT, Win-Stay-Lose-Shift,
ZDR, are Markov-1; they respond only to the current game
outcome, and remember no history.

e.g. in historical tournaments, TFT beat all the more complicated
strategies.

ZD papers assert longer-term memory will not improve
performance vs ZD players.

Stewart & Plotkin (2013) offered a proof that generous ZD
strategy (ZDR) is universally robust against all possible strategies
as invaders -- if you accept their assumptions.

So information has no value?
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Can "Information" Change Evolutionary Dynamics?

EGT: first-order Markov (p(X ′|X)) strategies such as Zero
Determinant players are universally robust; players with longer
memory or internal states (definition of an IEM) cannot help.

i.e. whole population is a local-IEM, but no IEM vs. IEM
dynamics.

to investigate this claim, developed concept of an Information
Player, where the individual player is itself an IEM: basic PL
estimator of opponent Φ ’s strategy vector p(X ′|X).

tested IP0 on classic EGT game (Prisoner’s Dilemma: "Defect"
vs. "Cooperate") vs. classic EGT strategies (e.g. TFT, WSLS,
ZDR), but applicable generally.
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IP0 Strategy: Infogain + Exploit

two phase strategy
infogain: instead of maximizing score, maximize information gain
by choosing move that will yield most information about
opponent’s strategy vector. Brief (10 moves).
exploit: choose optimal strategy vector against current inferred
population mixture. Longer (average lifetime ~ 100 moves).

"plays like me" = self-recognition: e.g. infogain "code" is highly
distinguishable from Markov-1 strategies.

NB: infogain + exploit meets our definition of a disinformation
attack if opponent population Φ is a local-IEM.
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The Power of Information?

"Information players" (IP) open two kinds of freedom that Markov-1
strategies lack:

self-recognition: use a different strategy with yourself than with
the competing type(s). E.g. Adami & Hintze (2013) outlined
theoretical "tag player" with perfect knowledge of "type" of every
player; cooperates with itself while defecting against "enemy"
type (Conditional Defector, ConDef).

population sensitivity: use different strategies with the
competing type depending on your population fraction.
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ZDR Resident
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when IP0 is in the minority, its optimal strategy is to play ALLC; when
in the majority, switch to ConDef.
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IP0 as Invader and Resident (Fixation Odds Ratio)

IP0 ALLC ALLD TFT WSLS ZDR ZDX

IP0 58.1 5.5 43.6 2.0 16.3 51.0

ALLC 0 0 49.5 0 21.1 54.8

ALLD 0 59.4 0 0.1 0 0

TFT 0 0 3.7 0 0 9.7

WSLS 0 34.7 0 7.1 0.3 21.2

ZDR 0 0 0.9 24.1 0 27.6

ZDX 0 0 1.6 0 0 0

Values are ρ/ρneutral ; donation game IPD, exp. imitation as in Stewart
& Plotkin 2013. Assumptions: β = 1,N = 100, i = 1,ε = 0.05

IP0 was uninvadable (no successful invasions in 10,000 runs).

IP0 invades all ZIPs, generally better or almost as well as best
existing invader.
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Maximal Resident Advantage

Define as the best lower-bound any resident strategy R can
achieve vs. all possible invaders I:

(sR− sI)MRA = max
R

min
I
(sR− sI)N,i

Information Player with perfect information (ConDef) achieves
both maximal sRR = R (by cooperating with itself) and the best
lower-bound interaction score minI ΔN,i (because it plays ALLD
vs. the invader). Hence it achieves MRA for f < 0.5, specifically

min
I
(sR− sI)N,i ≥

N−2i
N−1

(R−P)

since sII ≤ R for all possible invading strategies I.

IP0 operates within a few percent of this theoretical limit, because
it achieves that level of accuracy recognizing individual invaders.
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MRA: The Transition from Coalition to Tyranny

unique property of Information Players. Markov-1 cannot play
different strategy with self vs. non-self, nor switch strategy based
on population fraction.

dominance: majority, favored for fixation. (Markov-1 do this)

tyranny: not just above the opposition, but generic policy to kill
them all.

MRA is an objective obligation to tyranny.

in the absence of MRA, even Satan himself should "play nice"
(cooperate) sometimes, purely out of self-interest.

one-party state: (MRA).

two-party state: one side always has MRA.

two-party state with strong independent block: can stay below
MRA, if block is big enough, and independent enough.
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The Case for Studying IEM Dynamics in EGT

reveals new dynamics, e.g. frequency-dependent strategy
optimization; MRA.

many types of real-world players have IEM characteristics: e.g.
species vs. species; brain vs. brain in biology; person vs. person.

making disinformation an explicit subject for study seems like a
ubiquitous and interesting phenomenon that EGT should come to
grips with.

But, low on the priority list for existing EGT researchers. So will
only take off if people who share this interest coalesce as a group
who will read & use each others’ papers; collaborate etc.
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Multiscale Information Evolving Machine

define as IEM whose population elements are themselves IEMs,
e.g. ecosystem of species.

very different dynamic from bounded information production of
simple IEM (e.g. statistical inference of a static target ω).

E.g. strictly speaking, disinformation dynamic has no finite
information bound.

information rate is probably more important than total bound:
here too, interaction dynamics such as disinformation seem like
powerful "tunneling" mechanisms that reduce evolutionary leaps
to a gradient of successive disinformation attacks (e.g. evolution
of an immune system).

is this all just a tedious replay of old arguments about "group
selection" / multilevel selection?

Christopher Lee Empirical Information, Potential Information, and Disinformation as Signatures of distinct Classes of Information Evolving Machines


