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Where we’re going

I’ll show you a maximum entropy theorem. . .

. . . with entropy interpreted as biodiversity. . .

. . . but maybe you can interpret the theorem in other interesting ways.

Plan:

1. Measuring biological diversity

2. The theorem

3. Examples and consequences

4. Unanswered questions



1. Measuring biological diversity

joint with Christina Cobbold



A spectrum of viewpoints on biodiversity
Conserving species
is what matters

Rare species
count for as much
as common ones
—every species is precious

This ÝÑ

is more diverse than

that ÝÑ

Conserving communities
is what matters

Common species
are the really

important ones
—they shape the community

ÐÝ This

is less diverse than

ÐÝ that

‚ ‚

Rare species are

important

Rare species are

unimportant
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Quantifying diversity

model of
community

formula

measure of
diversity

similarity matrix Z

n ˆ n matrix (n “ number of species)

Zij “ similarity between ith and jth species “ Zji

0 ď Zij ď 1

and Zii “ 1

totally
dissimilar

N

identical

N

E.g.: Naive model: Z “

˜

1 0
. . .

0 1

¸

(species have nothing in common)

E.g.: Genetic similarity.

E.g.: Taxonomic: e.g. Zij “

$

’

&

’

%

1 if same species

0.7 if different species but same genus

0 otherwise.

frequency distribution p

p “

¨

˚

˝

p1
...
pn

˛

‹

‚

pi “ relative frequency,
or relative abundance,
of the ith species

pi ě 0 and
ř

pi “ 1

0 ‘viewpoint parameter’ q

qDZ ppq

(diversity
of order q)

q “ 0:
rare species are

important
Ó

q “ 8:
rare species are

unimportant
Ó

q

qDZ ppq

The diversity of order q is

qDZ ppq “
´

ÿ

i : pią0

pi pZpq
q´1
i

¯
1

1´q
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Visualizations

q “ 0
(sensitive to rare species)

p

p1

‘list’ of all
frequency

distributions

6

more diverse

less diverse

?

q “ 10
(insensitive to rare species)

p1

p

p

p1

q

qDZ



2. The theorem



The central questions

Take a list of species, with known similarity matrix Z .

Questions

‚ Which frequency distribution(s) maximize the diversity?

‚ What is the value of the maximum diversity?

Remember the birds!

In principle, the answers depend on the ‘viewpoint parameter’ q.



The solution

Theorem (2009) Neither answer depends on q. That is,

‚ There is a single frequency distribution pmax that maximizes diversity
of all orders q simultaneously (0 ď q ď 8)

—a ‘best of all possible worlds’.

‚ The maximum diversity, qDZ ppmaxq, is the same for all q.

The proof of the theorem gives a construction of pmax.



How is that possible?

q “ 0

pmax

p

p1

q “ 10

pmax

p1

p
pmax

p
p1

q

qDZ

Different values of the viewpoint parameter q produce different judgements
on which distributions are more diverse than which others.

But there is a single distribution pmax that is optimal for all q.



3. Examples and consequences



The naive model

Put

Zij “

#

1 if i “ j ,

0 if i ‰ j .

(Then qDZ ppq is exponential of Rényi entropy.)

The maximizing distribution is uniform: every species has equal abundance.

Why? Can prove it directly, or reason as follows:

One corollary of the theorem is that if a distribution is maximizing for some
q ą 0, then it is maximizing for all q.

We know that the uniform distribution maximizes the Shannon entropy
(q “ 1).

It follows that the uniform distribution maximizes all the Rényi entropies.



A three-species example

Z “

¨

˝

1 0.2 0.2
0.2 1 0.9
0.2 0.9 1

˛

‚ oak

pine species A

pine species B

((((((((((((

hhhhhhhhhhhh

0.9

0.2

0.2

Which frequency distribution maximizes the diversity?

Not this: 0.333 . . .

0.333 . . .

0.333 . . .

Or this: 0.5

0.25

0.25

In fact, it’s this: 0.48

0.26

0.26

This distribution maximizes diversity for all q, with constant value 1.703 . . ..



Properties of maximizing distributions

‚ There can be more than one maximizing distribution.

‚ A maximizing distribution can eliminate some species entirely.
How can that be?
To understand, run time backwards. . .

oak

ash

eucalyptus

10 species of pine

So if we start with a forest containing all 11 pine species,
eliminating the 11th will increase diversity.
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‚ There can be more than one maximizing distribution.

‚ A maximizing distribution can eliminate some species entirely.
How can that be?
To understand, run time backwards. . .

oak

ash

eucalyptus

11 species of pine Introducing an
11th species of
pine decreases
diversity.

So if we start with a forest containing all 11 pine species,
eliminating the 11th will increase diversity.



Computing the maximizing distribution

Start with an n ˆ n similarity matrix Z .

‚ Computing the maximizing distribution(s) takes 2n steps.

‚ But each step is fast. E.g. can do 25 species in a few seconds.

‚ And that’s for arbitrary similarity matrices Z .
For some special types of Z , the computation is near-instant.



Tree-based similarity matrices

Suppose we define similarity via a taxonomic or phylogenetic tree.

Example

Put

Zij “

$

’

’

’

’

&

’

’

’

’

%

1 if same species pi “ jq

0.7 if different species but same genus

0.3 if different genera but same family

0 otherwise.

Then:

‚ There’s a unique maximizing distribution pmax.

‚ It eliminates no species; that is, ppmaxqi ą 0 for all i .



4. Unanswered questions



Why is the theorem true?

Why is there a single frequency distribution that maximizes diversity from
all viewpoints simultaneously?

‚ We can prove it. . .

‚ And it’s easy in the naive case where Z is the identity (Rényi entropies).
Then the maximizing distribution is uniform.

But we lack intuition as to why it’s true in general.



What about maximization under constraints?

The theorem concerns maximization of diversity without constraints.

For some constraints, the theorem fails: there is no distribution that
maximizes diversity for all q simultaneously.

Under which types of constraint can we maximize diversity for all q
simultaneously?



What is the significance of the maximum diversity itself?

The theorem also says that the maximum diversity is independent of the
choice of viewpoint parameter q.

So, any similarity matrix Z (‘list of species’) gives rise to a number,
DmaxpZ q “

qDZ ppmaxq, which does not depend on the choice of q.

What does DmaxpZ q mean?

It has geometric significance. . .

(Mark Meckes)

How else can it be understood?



What are the biological implications of the theorem?

The theorem is fundamentally a maximum entropy theorem.

Interpreting entropy as diversity, it says there’s a ‘best of all possible worlds’
(if we think diversity is good).

But there are other biological interpretations of entropy!

Under those interpretations, what does the theorem tell us?



Summary



Summary

‚ § There is a one-parameter family of diversity measures, pqDZ ppqq0ďqď8,
generalizing Rényi (and Shannon) entropy.

§ They take into account not only the frequencies pi of the species,
but also the inter-species similarities pZijq.

‚ § Different values of the parameter q correspond to different viewpoints
on the relative importance of rare/common species.

§ Different values of q produce different judgements on which communities
are more diverse.

‚ Nevertheless:
§ Given a similarity matrix Z , there’s a single frequency distribution pmax

that maximizes diversity from all viewpoints q simultaneously.

§ Moreover, the maximum diversity value qDZ ppmaxq is the same for all q.

‚ Still, we don’t fully understand:
§ why the theorem is true

§ what its biological implications are.


