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Goal: to unify various ways that information and entropy are
used in biology.

For example:

I biological communication systems

I the ‘action-perception loop’

I the thermodynamic foundations of biology

I the structure of ecosystems

I measures of biodiversity

I evolution



The Shannon entropy of a probability distribution p : S → [0, 1]
on a set S is

H(p) = −
∑
i∈S

p(i) log(p(i))

It says how much information we learn upon discovering the value
of an element of S that was randomly chosen according to this
probability distribution.

We use base 2 for our logarithm if we want to measure information
in bits. But base e is also natural: then we’re measuring
information in nats.

All this generalizes from sums to integrals, but let’s not now.

https://en.wikipedia.org/wiki/Entropy_%28information_theory%29
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Nat_%28unit%29


Shannon was concerned with communication.

His source coding theorem puts a bound on how much you can
compress a signal — a string of symbols — in which each symbol
is independently chosen at random from a set S , with probability
distribution p.

In the limit of long signals, you can find a way to encode each
symbol using a string of H(p) + ε bits, with ε probability of error,
where ε > 0 is as small as you want.

You cannot use < H(p) bits to encode each symbol while still
achieving an arbitrarily small probability of error.

https://en.wikipedia.org/wiki/Shannon%27s_source_coding_theorem


Shannon’s noisy-channel coding theorem generalizes this to
communication channels with noise.

It says how to compute the channel capacity: the maximum
number of bits per code word that can be transmitted with
arbitrarily small error probability.

I won’t explain how. But the key idea is mutual information: how
much information two random variables have in common.

https://en.wikipedia.org/wiki/Noisy-channel_coding_theorem
https://en.wikipedia.org/wiki/Noisy-channel_coding_theorem
https://en.wikipedia.org/wiki/Channel_capacity
https://en.wikipedia.org/wiki/Mutual_information


A ‘pair of random variables’ X and Y is a probability distribution
on a set S × T . This gives probability distributions on S and on
T . We may thus define three entropies: the joint entropy
H(X ,Y ) and the individual entropies H(X ) and H(Y ).

The mutual information is

I (X ;Y ) = H(X ,Y )− H(X )− H(Y )

The entropy of X conditioned on Y is

H(X |Y ) = H(X ,Y )− H(Y )

https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Conditional_entropy


Shannon’s other main achievement was founding rate distortion
theory.

Here we put a distance function on our set S of symbols, and seek
to encode them in way that lets the signal be reconstructed to
within some distance d > 0, called the distortion. We seek to do
this using the minimum number of bits per symbol.

https://en.wikipedia.org/wiki/Rate%E2%80%93distortion_theory
https://en.wikipedia.org/wiki/Rate%E2%80%93distortion_theory


All these ideas of Shannon may be important in understanding:

I communication between organisms

I the nervous system, which communicates signals via nerve
impulses and neurotransmitters

I other forms of intercellular communication, for example via
hormones and cytokines

I intracellular communication, for example via gene expression
and gene regulation

https://en.wikipedia.org/wiki/Action_potential
https://en.wikipedia.org/wiki/Action_potential
https://en.wikipedia.org/wiki/Neurotransmitter
https://en.wikipedia.org/wiki/Hormone
https://en.wikipedia.org/wiki/Cytokine
https://en.wikipedia.org/wiki/Gene_expression
https://en.wikipedia.org/wiki/Regulation_of_gene_expression


If biological communication is near-optimized by evolution, we may
use Shannon’s ideas on optimal communication — appropriately
generalized — to help generate testable hypotheses. But beware:
in biology, communication is always just a means to an end.

University of Bielefeld

Natural selection maximizes fitness, not ‘bits per second’.

https://johncarlosbaez.wordpress.com/2014/10/30/sensing-and-acting-under-information-constraints/
https://johncarlosbaez.wordpress.com/2014/10/30/sensing-and-acting-under-information-constraints/


Communication typically deals with a few bits — or terabytes —
of relevant information. The complete description of a physical
object uses vastly more information, most of which is irrelevant for
understanding its macroscopic properties. Physicists call this
irrelevant information entropy.

I your genome: 1010 bits.

I all words ever spoken by human beings: ∼ 4× 1019 bits.

I genomes of all living humans: 6× 1019 bits.

I one gram of water at room temperature: 4× 1024 bits.

The tendency for information to shift from more relevant to less
relevant forms — the Second Law of Thermodynamics —
underlies chemistry and thus biology.

https://en.wikipedia.org/wiki/Second_law_of_thermodynamics


Maximizing entropy is a powerful way to choose hypotheses.

The maximum entropy method for choosing a probability
distribution p : S → [0, 1] says we should maximize

H(p) = −
∑
i∈S

p(i) log(p(i))

subject to whatever constraints we want p to obey.



For example, suppose we have a function f : S → R and we want
to choose p that maximizes H(p) subject to the constraint that
the expected value of f is some number c :∑

i∈S
p(i)f (i) = c

Then we should choose a Boltzmann distribution:

p(i) =
e−βf (i)∑

i∈S
e−βf (i)

Which β should we choose? It depends on which c we want.

All this generalizes painlessly when we have a collection of
functions f1, . . . , fn : S → R.

https://en.wikipedia.org/wiki/Boltzmann_distribution


Physicists have developed the maximum entropy method to a high
art when S is the set of states of a physical system in thermal
equilibrium.

Jaynes emphasized that we can use all this machinery more
generally. For example: we can let S be a set of species, and p(i)
be the probability that an organism belongs to the ith species.
Ideas of this type underlie John Harte’s work on ecology.

Intriguingly, in this case the entropy H(p), and generalizations like
the Rényi entropy Hq(p), are widely used as measures of
biodiversity!

Is there a sense in which nature maximizes biodiversity subject to
constraints?

http://bayes.wustl.edu/etj/prob/book.pdf
https://johncarlosbaez.wordpress.com/2013/02/21/maximum-entropy-and-ecology/
https://en.wikipedia.org/wiki/R%C3%A9nyi_entropy


The truth seems to be more complicated....

Let
P = (P1, . . . ,Pn)

be the vector of populations of n different self-replicating entities:
for example, species of organisms.

The probability that an organism belongs to the ith species is

pi =
Pi∑
j Pj

We can think of this probability distibution as a ‘hypothesis’ and
its change with time as a ‘learning process’. Natural selection is
analogous to Bayesian updating.



Let p and q be a two probability distributions. The information of
q relative to p, or Kullback–Leibler divergence, is

I (q||p) =
∑
i

qi ln

(
qi
pi

)
This is the amount of information left to learn if p is our current
hypothesis and q is the ‘true’ probability distribution describing a
situation.

In Bayesian language, p is our prior.

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Prior_probability


Suppose the population P(t) evolves according to the replicator
equation:

d

dt
Pi (t) = Fi (P1(t), . . . ,Pn(t)) Pi (t)

where Fi , the fitness of the ith species, depends smoothly on all
the populations.

Suppose q is a ‘dominant distribution’ — a distribution of species
whose mean fitness is at least as great as that of any other
distribution it could find itself amidst. Then Shahshahani proved

d

dt
I (q||p(t)) ≤ 0

As time passes, the information the population has ‘left to learn’
never increases.

Reality is more complicated; Marc Harper will say more.

https://en.wikipedia.org/wiki/Replicator_equation
https://en.wikipedia.org/wiki/Replicator_equation
http://math.ucr.edu/home/baez/bio_info/bio_info_web.pdf#page=5
http://arxiv.org/abs/0911.1383

