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HEAT OF ERASING A BIT
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Thermodynamic cost to erase a bit   - the 
minimal amount of entropy that must be 

expelled to the environment -   is ln[2]
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•  Crucially, DO know precise pre-erasure value of bit            
-  After all, a computer is useless if don’t know its initial state

Bennett, 2003: “If erasure is applied to random data, the operation 
may be thermodynamically reversible … but if it is applied to known 
data,  it is thermodynamically irreversible.”
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•  Crucially, DO know precise pre-erasure value of bit            
-  After all, a computer is useless if don’t know its initial state

•  In fact, the prior distribution over the pre-erasure value  – and 
in particular the entropy of that prior –  is irrelevant

•  Requires careful engineering to make this property hold
•  “Local detailed balance” does not hold



REFRIGERATION BY 
RANDOMIZING A BIT
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•  Example: Adiabatic demagnetization
•  Exploited in modern engineering:

o  Noisy error correction computing
o  Real (not “pseudo”) random number generators



SOME ERASING AND 
SOME RANDOMIZATION

•  What is the thermodynamic cost for an arbitrary conditional 
distribution from X = {0, 1, 2, 3} into itself?

•  E.g., what if 
•  0 and 1 go to 0 (as in bit erasure);

i.e., P(0 | 0) = P(0 | 1) = 1
•  2 goes to 0 with probability .8, stays the same otherwise;

i.e., P(0 | 2) = .8, P(2 | 2) = .2
•  3 goes to 2 with probability .4, and to 0 with probability .6;

i.e., P(2 | 3) = .5, P(0 | 3) = .6



THERMODYNAMIC COST
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= I(Wt+1;Vt+1)� I(Wt;Vt)

•  where vt is the observable v’s value at time t;
•  π(. | .) is the conditional distribution of dynamics;
•  I( . ; .) is mutual information;
•  W is unobserved degrees of freedom;



THERMODYNAMIC COST

•  where vt is the observable v’s value at time t;
•  π(. | .) is the conditional distribution of dynamics;

E(cost) =
X

vt,vt+1

⇡(vt+1 | vt)P (vt) ln

X

v0
t

⇡(vt+1 | vt)
�

Example: 
In a 2-to-1 map, π(0 | 0) = π(0 | 1) = 1, 
so expected cost equals ln[2]



BOUNDS ON 
THERMODYNAMIC COST

Given the evolution kernel π(. | .), as one varies P(vt):

•  where vt is the observable v’s value at time t;
•  H(.) is Shannon entropy;
•  KL(. || .) is KL divergence;
•  Π+(vt+1)   =  ∑vtπ (vt+1 | vt) / |V|

0  E(cost) +H(Vt) +H(Vt+1)  log[|V |]�max

vt
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⇡(Vt+1 | a) || ⇧+

(Vt+1)
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Example: In a 2-to-1 map both bounds are tight:

 Thermodynamic cost is the drop in Shannon entropies over V



K’TH ORDER MARKOV CHAINS

For a k’th order Markov chain, thermodynamic cost 
during a single step is bounded below by

and above by

Very messy expression

L ⌘ H(Vt | Vt+1, . . . , Vt+k�1)�H(Vt+k | Vt+1, . . . , Vt+k�1)



K’TH ORDER MARKOV CHAINS

For a k’th order Markov chain, thermodynamic cost 
during a single step is bounded below by

and above by

If P(v) has reached stationarity, lower bound is

(Cf. Still et al. 2012)

Very messy expression

L ⌘ H(Vt | Vt+1, . . . , Vt+k�1)�H(Vt+k | Vt+1, . . . , Vt+k�1)

E(cost) = I(Vt;Vt+1, . . . , Vt+k�1)� I(Vt+k;Vt+1, . . . , Vt+k�1)



THERMODYNAMIC COST

Tons of other fun results, including:

1)   Second law: Thermodynamic cost is non-negative for any 
process that goes from distribution A to distribution B     
and then back to distribution B

2)   Examples of coarse-graining (in the statistical physics 
sense) that increase thermodynamic cost

3)   Examples of coarse-graining that decrease thermo. cost
4)   Implications for optimal compiler design
5)   Analysis of thermodynamic cost of Hidden Markov Models



IMPLICATIONS FOR 
DESIGN OF BRAINS

•  P(xt) a dynamic process outside of a brain;
•  Natural selection favors brains that: 
•  (generate vt’s that) predict future of x accurately;

but …
•  not generate heat that needs to be dissipated;
•  not require free energy from environment (need to 

create all that heat)

Natural selection favors brains that:

 1) Accurately predict future (quantified with a fitness function);
 2) Using a prediction program with minimal thermo. cost



IMPLICATIONS FOR 
BIOCHEMISTRY

•  Natural selection favors (phenotypes of) a prokaryote that:
•  (generate vt’s that) maximize fitness;

but …
•  not generate heat that needs to be dissipated;
•  not require free energy from environment (need to create 

all that heat)

Natural selection favors prokaryotes that:

 1) Behave as well as possible (quantified with a fitness function);
 2) While implementing behavior with minimal thermo. cost



COMPLEXITY DYNAMICS
OF BIOSPHERE

•  where vt is the observable v’s value at time t;
•  π(. | .) is the conditional distribution of dynamics;

E(cost) =
X

vt,vt+1

⇡(vt+1 | vt)P (vt) ln
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N.b., thermodynamic cost varies with t:

    For what kernels π(. | .) does thermo. cost 
increase with time?
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Plug in π(. | .) of terrestrial biosphere:

    Does thermo. cost of biosphere behavior 
increase with time?
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•  where vt is the observable v’s value at time t;
•  π(. | .) is the conditional distribution of dynamics;
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Plug in π(. | .) of terrestrial biosphere:

     How far is thermo. cost of biosphere 
from upper bound of solar free energy flux?


