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Abstract

Noether’s theorem links the symmetries of a quantum system with its conserved quantities,
and is a cornerstone of quantum mechanics. Here we prove a version of Noether’s theorem for
Markov processes. In quantum mechanics, an observable commutes with the Hamiltonian if
and only if its expected value remains constant in time for every state. For Markov processes
that no longer holds, but an observable commutes with the Hamiltonian if and only if both its
expected value and standard deviation are constant in time for every state.

1 Introduction

There is a rich analogy between quantum mechanics and what one might call ‘stochastic mechanics’,
where probabilities take the place of amplitudes [1]. In quantum mechanics, we specify the state
of a system by an element 1 of a Hilbert space, and describe its time evolution by the Schrédinger

equation:

d .
E = —ZH’(/}

where H is a self-adjoint linear operator called the Hamiltonian. For Markov processes, we specify
the state of a system by a probability distribution 1) on some measure space, and describe its time
evolution by the so-called ‘master equation’

d
b= Hy

where H is a linear operator variously known as a ‘stochastic Hamiltonian’, ‘transition rate matrix’
or ‘intensity matrix’. In quantum mechanics, it is well-known that conserved quantities correspond
to self-adjoint operators that commute with the Hamiltonian. Here we present a similar result for
Markov processes.

To avoid technicalities and focus on the basic idea, we start by considering Markov processes, or
technically ‘Markov semigroups’, where the measure space X is just a finite set equipped with its
counting measure. Later we consider the general case. We begin by reviewing some basic facts and
setting up some definitions; for details see Stroock [7].



When X is a finite set, a probability distribution on X is a function ¢: X — R such that
1; >0 for all ¢ € X and
> =1

i€X
We say an operator U: R¥ — R¥ is stochastic if it is linear and it maps probability distributions

to probability distributions. A Markov semigroup consists of operators U(t): R* — R one for
each t € [0,00), such that:

(i) U(t) is stochastic for all ¢t > 0.

(ii) U(t) depends continuously on t.
(iii) U(s+1t) =U(s)U(t) for all s,t > 0.
(iv) U(0) = 1.

Any Markov semigroup may be written as U(t) = exp(tH) for a unique linear operator H: R¥X —
RX. Moreover, this operator H is infinitesimal stochastic, meaning that if we write it as a matrix
using the canonical basis for RX, then:

(i) Hij > 0forall i,j € X with ¢ # j.
(ii) > ,ex Hij =0 for all j € X.

For i # j the matrix entry H;; is the probability per time of a transition from the state j € X to
the state ¢ € X. Condition (i) says that these probabilities are nonnegative. Condition (ii) then
says that the diagonal entry H;; is minus the probability per time of a transition out of the state <.

Conversely, for any infinitesimal stochastic operator H: R¥ — R exp(tH) is a Markov semi-
group. Given any function ¢: X — R, we obtain a solution for ¢ € [0, c0) of the master equation:

d
() = ()

with H as Hamiltonian and v as the initial value by setting

P(t) = exp(tH)y.

If 4 is a probability distribution, then so is ¥ () for all ¢ > 0.

Next we turn to Noether’s theorem. There are many theorems of this general type, all of which
relate symmetries of a physical system to its conserved quantities. Noether’s original version applies
to the Lagrangian approach to classical mechanics, and obtains conserved quantities from symmetries
of the Lagrangian [3, 5]. This version has been generalized to stochastic mechanics by a number
of authors [2, 6, 8]. In the Hamiltonian approach to classical mechanics, any observable having
vanishing Poisson bracket with the Hamiltonian both generates symmetries of the Hamiltonian and
is a conserved quantity. This idea extends to quantum mechanics if we replace Poisson brackets
by commutators. It is this last form of Noether’s theorem, somewhat removed from the original
form but very easy to prove, that we now generalize to Markov processes. For a Markov process, an
observable will commute with the Hamiltonian if and only if both its expected value and that of its
square are constant in time for every state.

Here an observable is a function O: X — R assigning a real number O; to each state ¢ € X.
We identify O with the diagonal matrix with éith entry equal to O;, and define its expected value
for a probability distribution ¥ to be

i€X

Our Noether theorem for finite Markov processes may then be stated as follows:



Proposition (Noether’s Theorem, Stochastic Version). Let X be a finite set, let H: R* — RX be
an infinitesimal stochastic operator, and let O be an observable. Then [O, H] = 0 if and only if for all
families of probability distributions {4 (t) | t € [0,00)} obeying the master equation Sv)(t) = Hi(t),
the expected values (O, (t)) and (O?,)(t)) are constant.

For comparison, in the quantum version, both the Hamiltonian and the observable are given
by self-adjoint operators on a Hilbert space. To avoid technicalities, we only state the version for
bounded operators:

Proposition (Noether’s Theorem, Quantum Version). Let H and O be bounded self-adjoint opera-
tors on a Hilbert space. Then [O, H] = 0 if and only if for all families of states {1(t) | t € [0,00)}
obeying Schridinger’s equation %1/)@) = —tHY(t), the expected value (P(t), OY(t)) is constant.

The similarity between these two results is striking, but this also illuminates a key difference: the
Markov version requires not just the expected value of the observable to be constant, but also the
expected value of its square. This condition cannot be weakened to only require that the expected
value be constant. Observe that if

0 10 0 0 0
H=10 -2 0 and o=(0 10
0 10 0 0 2
then for the initial value ¢ = (0,1,0), we have £(O,(t)) = 0 for all t > 0, but [O, H] # 0.
Indeed, in both the quantum and stochastic cases, the time derivative of the expected value of
an observable O is expressed in terms of the commutator [O, H]. In the quantum case we have

d

= (8(0), 09(1)) = —i(y(1), [0, H]Y (1))

for any solution ¥(t) of Schréodinger’s equation. The polarisation identity then implies that the
right-hand side vanishes for all solutions if and only if [O, H] = 0. In the stochastic case we have

d
{0 0(1) = (1[0, HJy(1)

for any solution v (¢) of the master equation. However, in this case the right-hand side can vanish
for all solutions () without [O, H] = 0, as shown by the above example. To ensure [O, H] = 0 we
need a supplementary hypothesis, such as the vanishing of %(OQ, P(t)).

What is the meaning of this supplementary hypothesis? Including it means that not only is the
expected value of the observable O conserved, but so is its variance, defined by

<027U)> - <Oa ¢>2

Of course the variance is the square of the standard deviation of O, so an observable commutes with
the Hamiltonian if and only if both its expected value and standard deviation are constant in time
for every state.

2 A Noether theorem for finite Markov processes

While proving Noether’s theorem for finite Markov processes it is enlightening to introduce some
other equivalent characterizations of conserved quantities. For this we shall introduce the transition
graph of an infinitesimal stochastic operator. Suppose X is a finite set and H: R¥ — R¥ is an
infinitesimal stochastic operator. We may form a directed graph with the set X as vertices and an
edge from j to ¢ if and only if H;; # 0. We say ¢ and j are in the same connected component of
this graph if there is a sequence of vertices j = ko, k1, ..., k, = i such that for each 0 < ¢ < n there
is either an edge from ky to kg1 or from kpyq to ky.
Our Noether theorem is the equivalence of (i) and (iii) in the following theorem:



Theorem 1. Let X be a finite set, let H: RX — RX be an infinitesimal stochastic operator, and
let O be an observable. Then the following are equivalent:

(i) [0, H] = 0.

(i) %(f(O),z/)(t» = 0 for all polynomials f: R — R and all ¢ satisfying the master equation with
Hamiltonian H.

(iii) (0, (1)) = L(0?,4(t)) =0 for all ¢ satisfying the master equation with Hamtiltonian H.
(v) O; = O; ifi and j lie in the same connected component of the transition graph of H.
Proof. We prove (i) = (ii) = (iii) = (iv) = (i).

(i) = (ii) As H commutes with O, H commutes with f(O) whenever f is a polynomial. From
this and the master equation we have

#(f(0), (1) = (f(0), Zo(1)) = (f(O), HY(t)) = (1, f(O)H(t)) = (1, HF(O)(1))

But H is infinitesimal stochastic, so

(1,Hf(O = Y Hi;f(O =3 (ZHU) b;(t) = 0.

i,j€X jEX “MieX

(ii) = (iii) Both O and O? are polynomials in O.
(iii) = (iv) Suppose that i,j € X lie in the same connected component. We claim that then

O; = O;. As equality is transitive, it suffices to show O; = O; whenever H;; # 0. For this it suffices
to show that for any j € X we have

> (0; - 0:)*Hy; = 0.
i€ X

This is enough, as each term in this sum is nonnegative: when ¢ = j we have O; —O; = 0, while when
i # j, both (O; — 0;)% and H;; are nonnegative—the latter because H is infinitesimal stochastic.
Thus when their sum is zero each term (O; — O;)?H;; is zero. But this means that if H;; is nonzero,
then O; = Oj, and this proves the claim.

Expanding the above expression then, we have

> (0; - 0:)?Hij =0} > Hi; —20; Y O:iHi;j+ Y O}H;;.
eX 1€X eX 1€X

The three terms here are each zero: the first because H is infinitesimal stochastic, and the latter
two since, if e; is the probability distribution with value 1 at j € X and 0 elsewhere, then

d
E<O’ exp(tH)e;)

(O,Hej) = > O;H;;

t=0 ieX

and g
E(OQ, exp(tH)e;)

02 ,Hej) = 202 i

t=0 ieX
and by hypothesis these two derivatives are both zero.

(iv) = (i) When H,; is nonzero, the states ¢ and j lie in the same component, so O; = O;.
Thus for each i,j € X:

[0, H];; = (OH — HO)y; = O;Hyj; — Hi;0; = (O; — O;)H,; = 0. O



3 A Noether theorem for general Markov processes

In this section we generalize Noether’s theorem for Markov processes from the case of a finite set of
states to a more general measure space. This seems to require some new ideas and techniques.

Suppose that X is a o-finite measure space with a measure we write simply as dx. Then proba-
bility distributions ¢ on X lie in L!(X). We define an observable O to be any element of the dual
Banach space L*°(X), allowing us to define the expected valued of O in the probability distribution
1) to be

(O, ) :/O(I)zb(sc) dx.

X

We can also think of an observable O as a bounded operator on L'(X), namely the operator of
multiplying by the function O.

Let us say that an operator U: L!(X) — L!(X) is stochastic if it is linear, bounded, and maps
probability distributions to probability distributions. Equivalently, U is stochastic if it is linear and
obeys

Y>>0 = Uy >0

and

Jwowas= [ v ds
X

X

for all 1 € L*(X). We may also write the latter equation as
(L,UY) = (1,4).

A Markov semigroup is a strongly continuous one-parameter semigroup of stochastic operators
U(t): L*(X) — L'(X). By the Hille-Yosida theorem [9], any Markov semigroup may be written as
U(t) = exp(tH) for a unique closed operator H on L*(X). Any operator H that arises in this way
is infinitesimal stochastic. However, such operators are typically unbounded and only densely
defined. This makes it difficult to work with the commutator [O, H], because the operator O may
not preserve the domain of H. From our experience with quantum mechanics, the solution is to work
instead with the commutators [O,exp(tH )], which are bounded operators defined on all of L(X).
This amounts to working directly with the Markov semigroup instead of the infinitesimal stochastic
operator H.

Theorem 2. Suppose X is a o-finite measure space and
Ut): LMX) — LY(X)

is a Markov semigroup. Suppose O is an observable. Then [O,U(t)] = 0 for all t > 0 if and only if
for all probability distributions v on X, the expected values (O, U (t)y) and (O ,U(t)y) are constant
as a function of t.

This result is an easy consequence of the following one, which is of interest in its own right, since
it amounts to a Noether’s theorem for Markov chains. A ‘Markov chain’ is similar to a Markov
process, but time comes in discrete steps, and at each step the probability distribution ¢ evolves via
1) — U1 for some stochastic operator U.

Theorem 3. Suppose X is a o-finite measure space and U : L*(X) — L*(X) is a stochastic operator.
Suppose O is an observable. Then [O,U] =0 if and only if for all probability distributions i on X,

(0, U%) = (0,¢) and (O*,Uy) = (0%, ).



Proof. First, suppose [O,U] = 0. Note
(0,¢) =(1,09)

and since U is stochastic, also
(LU) =(1,9)
for all ¢ € L}(X). Thus, for any probability distribution 1) on X and any n > 0 we have

(O™, Uy) = (1,0"Uy) = (LUO"Y) = (1,0"¢) = (0", ¢)).

Taking n = 1,2 we get the desired result.

To prove the converse, we use three lemmas. In all these X is a o-finite measure space,
U: L}(X) — LYX) is a stochastic operator, and O is an observable. We freely switch between
thinking of O as a function in L°°(X) and the operator on L'(X) given by multiplying by that
function.

Lemma 1. Suppose that for any compact interval I C R the operator U commutes with x1(O),
meaning the operator on L*(X) given by multiplying by the characteristic function of

O ' I)={zreX: O(x) € I}
Then U commutes with O.

Proof. The range of the function O is contained in the interior of some interval [—M, M]. The step
functions )

n— .
M

Fn= 2 T X e

i=—n
are uniformly bounded and converge pointwise to the identity function on the range of O, so by the
dominated convergence theorem f,,(O)1) — Ot in the L' norm for all ¢ € L*(X). Furthermore,
though we have not written it as such, f, is a linear combination of characteristic functions of
compact intervals, since we include a single point as a degenerate special case of a compact interval.

Thus, by hypothesis, U commutes with f,,(O). It follows that for every ¢ € L!(X), we have

OU¢ = lim f,(O)U®

n—oo

= lim Uf (O O

= UOvy.
Lemma 2. Suppose that for every compact interval I and every ¢ € L*(X),
supp(¢) C O~ H(I) = supp(Uy) € O~ 1(I).
Then U commutes with every operator x1(O).

Proof. The set of L' functions supported in O~!(I) is the range of the operator x;(O), so the
hypothesis says that U maps the range of this operator to itself. Given any 1 € L1(X) and writing
p = x1(0), we have

W =p+ (1 - p)

SO
pUy = pUpy + pU (1 — p)ep.



Since U preserves the range of p and p is the identity on this range, we have pUpy = Uptp. Since
the range of the function O is contained in some interval [—M, M|, we can write 1 — p as a linear
combination of operators x ;(O) for other compact intervals J, again using the fact that a point is
a degenerate case of a compact interval. Thus U also preserves the range of 1 — p. Since the range
of 1 — p is the kernel of p, pU(1 — p)yp = 0. We thus have

pUy = Upy. O

Lemma 3. Suppose that (O,Uv) = (0,v) and (O?,Uv) = (O*4) for all oy € L*(X). Then for
every compact interval I and every ¢ € L'(X),

supp(v) € O~ (I) = supp(Uv) C O~'(I).

Proof. The range of O is contained in the interior of some interval [—M, M]. Thus we shall only
prove the lemma for I contained in (—M, M), since otherwise we can replace I by a smaller compact
interval with this property without changing O~*(I).

Suppose 9 is supported in O~1(I). We wish to show the same for Ur. It suffices to show that
Ut is supported in O~1(J) where J is any compact interval with I C int(J) C (=M, M). Moreover,
we may assume that 1 is a probability distribution, since any L' function supported in O~1(1) is a
linear combination of two probability distributions supported in this set.

To show that U is supported in O~1(.J), we write

n—1
Y= Z (5

1=—n

where

wi = X[M (i+1)M)(O) ’Q/J

n n

We thus have

n—1
U=y Uiy
We shall show that ‘
I =xsONTHills < 5 19l (1)

for some constant c. It follows that

11 =X (O) Ul < XIMfXJ Wmm<——2nmm = Il = —

i=—n i=—n

for all n, and thus
(1 =xs(0)U[l, =0

so U1 is supported in O~1(J).

To prove (1) we shall use Chebyshev’s inequality, which says that the probability of a random
variable taking a value at least k standard deviations away from its mean is less than or equal to
1/k2. However, we first need to convert probability functions on X into probability measures on the
real line.

For any function ¢ € L'(X) we can push forward the signed measure ¢ dz on X via O: X — R
to obtain a signed measure on R, which we call 7,/) Concretely, 7,/) is characterized by the equation

[ 10 s = [ 10
X R



which holds for any bounded measurable function f: R — R. Since the integral at left only depends
on the value of f in the interval [— M, M], the same is true for the integral at right, so with no harm
we can restrict f and the integral to [-M, M]. Clearly

—_~

p+x)=d+X
and o _
() = ad

for all « € R and ¢, x € L'(X). If ¢ is nonnegative then 5 is a nonnegative measure, and if ¢ is a
probability distribution then ¢ is a probability measure. _
Since we are assuming that the function v is supported in O~'I, the measure 1 is supported in

I. Since
i = Xpuar eae (O)0

we have _ _
Y = X[ads GH1)M Y.

In what follows we assume 1); is nonzero, since otherwise (1) is trivial. This implies that we can

rescale 1; to obtain a probability measure, namely

1 ~
ol

Since this probability measure is supported in the interval I N [iM/n, (i + 1)M/n), clearly its mean
lies in I, and its standard deviation is less than M /n.

By our hypotheses on U,

1 —
Tl 7Y

is another probability measure on the real line, with the same mean and standard deviation as the one
above. Thus, by Chebyshev’s inequality, the integral of this probability measure over the complement
of J is less than or equal to ((M/n)/d)?, where d is the distance of I from the complement of .J. In

other words,
1 /N Md\*
e (M)
14ill1 n
R—J

[T < S

R

or writing (Md)? = c,

or equivalently

[0 -30)@) U@ do < 5 il
X

Since the integrand is nonnegative, this implies
c
(1 =xs(0)Utilly < ﬁWi”l

which is (1), as desired. O

Combining these three lemmas, the converse follows. O
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