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Operads are powerful tools, and this is the book to read about them. However, if
you're like most mathematicians, your first question will be: what is an operad?
Luckily, the answer is simple. An operad O consists of a set O,, of abstract ‘n-
ary operations’ for each n, together with rules for composing these operations.
We can think of an n-ary operation as a little black box with n wires coming in

and one wire coming out:

We are allowed to compose these operations as follows:

feeding the outputs of the operations gi,...,g, into the inputs of the n-ary
operation f, and obtaining a new operation which we call f o (g1,...,gn). We
demand that there be a unary operation serving as the identity for composition,
and impose an ‘associative law’ that makes a composite of composites like this

well-defined:



We can permute the inputs of an n-ary operation f and get a new operation:

N

S

which we call fo if o is the the permutation of the inputs. We demand that
this give a right action of each permutation group S,, on each set O,,. Finally,
we demand that these actions be compatible with composition. For example:

That’s all!l Unfortunately, if one writes these definitions using equations, they
look quite formidable. There must be hundreds of mathematicians roaming the
earth who think that operads are difficult and abstruse, because they’ve seen
the definitions without any pictures. These people should be grateful that they
weren’t taught how to tie their shoes in an equally wrong-headed manner.
With this answered, your next question is probably: why should I care about
these things? There are many reasons, but historically, the first comes from
topology. In homotopy theory, the main way to probe a space X is by looking
at maps f : S¥ — X. We define the ‘kth loop space’ of X, Q*X, to be the
space of all such maps sending the north pole to a chosen point * € X. The set
of connected components of Q¥ X is called the ‘kth homotopy group’ of X; this



is a group for k > 0 and an abelian group for k > 1.

Most homotopy theorists would gladly sell their souls for the ability to com-
pute the homotopy groups of an arbitrary space. However, there is extra in-
formation lurking in the space QFX that gets lost when we consider only its
connected components. Starting in the late 1950s, a large number of excellent
topologists including Adams and MacLane, Stasheff, Boardman and Vogt, and
May struggled to understand all the structure possessed by an k-fold loop space.
For example, Q' X is something like a topological group, thanks to our ability
to ‘compose’ loops. However, the usual group laws such as associativity hold
only up to homotopy. To make matters even trickier, these homotopies satisfy
certain laws of their own, but only up to homotopy — and so on ad infinitum.
Similarly, QFX is something like an abelian topological group for k > 1, but
again only up to homotopies that themselves satisfy certain laws up to homo-
topy, and so on — and in a manner that gets ever more complicated for higher
k.

After more than decade of hard work, it became clear that operads are the
easiest way to organize all these higher homotopies. Just as a group can act
on a set, so can an operad O, each abstract operation f € O,, being realized
as actual n-ary operation on the set in a manner preserving composition, the
identity, and the permutation group actions. A set equipped with an action
of the operad O is usually called an ‘algebra over O’. It turns out that the
structure of a k-fold loop space is completely captured by saying that it is an
algebra over a certain operad! Even better, if we choose this operad O to be
‘cofibrant’, any space equipped with a homotopy equivalence to a k-fold loop
space will also become an algebra over O. This is the simplest example of how
operads are used to describe ‘homotopy invariant algebraic structures’, in which
all laws hold up to an infinite sequence of higher homotopies.

For an operad to do this job, it must really have a topological space of op-
erations O,, for each n, since the fact that various laws hold up to homotopy is
expressed by the existence of certain continuous paths in these spaces. Similarly,
composition and the permutation group actions should be continuous maps. Fi-
nally, we should only consider algebras that are topological spaces on which the
operad acts continuously.

In short, topology really requires operads and their algebras in the category
of topological spaces rather than sets. The ability to transplant the theory of
operads to various different categories is an important aspect of their power.
After a long pedagogical warmup, the authors of this book wisely treat oper-
ads in an arbitrary symmetric monoidal category. They also prove the worth
of this level of generality by discussing many examples in detail. For example,
they describe how operads in the category of chain complexes have been used
to study deformation quantization — and also string theory, where the opera-
tions of gluing together Riemann surfaces are important. Indeed, these physics
applications have led to a kind of renaissance in the theory of operads!

The plan of the book is as follows. Part I gives a nice introductory tour of
operads and their applications. Part IT starts by describing operads in a sym-
metric monoidal category, focusing on their relation to trees and introducing the



associahedron operad as a key example. The authors then consider applications
to homotopy theory, leading up to a general theory of homotopy-invariant alge-
braic structures. The next section treats a variety of algebraic topics including
the theory of ‘quadratic operads’, which are operads in the category of vector
spaces generated by binary operations satisfying ternary relations. Three classic
examples are the operads whose algebras are associative algebras, commutative
algebras and Lie algebras. The authors describe a (co)homology theory for the
algebras of any quadratic operad, which generalizes Hochschild (co)homology
for assocative algebras, Harrison (co)homology for commutative algebras, and
the usual (co)homology of Lie algebras. Then the authors turn to operads com-
ing from geometry, particularly certain moduli spaces and configuration spaces.
Finally, they discuss some generalizations including cyclic operads, which show
up in cyclic cohomology, and modular operads, which show up in closed string
field theory. The book does not cover the applications of operads to the theory
of m-categories. Luckily, Tom Leinster is writing a book on that subject. For
all other aspects of operad theory, this book by Markl, Shnider and Stasheff is
the place to start.



