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Abstract—We present a unified framework for Petri nets
and various variants, such as pre-nets and Kock’s whole-grain
Petri nets. Our framework is based on a less well-studied
notion that we call Σ-nets, which allow fine-grained control
over whether each transition behaves according to the collective
or individual token philosophy. We describe three forms of
execution semantics in which pre-nets generate strict monoidal
categories, Σ-nets (including whole-grain Petri nets) generate
symmetric strict monoidal categories, and Petri nets generate
commutative monoidal categories, all by left adjoint functors.
We also construct adjunctions relating these categories of nets
to each other, in particular showing that all kinds of net can
be embedded in the unifying category of Σ-nets, in a way that
commutes coherently with their execution semantics.

I. INTRODUCTION

A Petri net is a seemingly simple thing:

It consists of “places” (drawn as circles) and “transitions”
(drawn as boxes), with directed edges called “arcs” from
places to transitions and from transitions to places. The idea is
that when we use a Petri net, we place dots called “tokens” in
the places, and then move them around using the transitions:

Thanks in part to their simplicity, Petri nets are widely used in
computer science, chemistry, biology and other fields to model
systems where entities interact and change state [13], [27].

Ever since the work of Meseguer and Montanari [25],
parallels have been drawn between Petri nets and symmetric
strict monoidal categories (SSMCs). Intuitively, a Petri net can
be interpreted as a presentation of such a category, by using
its places to generate a commutative monoid of objects, and its
transitions to generate the morphisms. An object in the SSMC

represents a “marking” of the net—a given placement of to-
kens in it—while a morphism represents a “firing sequence”: a
sequence of transitions that carry markings to other markings.
One of the advantages of this “execution semantics” for a net
is that it can be compositionally interfaced to other structures
using monoidal functors.

However, the apparent simplicity of Petri nets hides many
subtleties. There are various ways to make the definition of
Petri net precise. For example: is there a finite set of arcs
from a given place to a given transition (and the other way
around), or merely a natural number? If there is a finite set,
is this set equipped with an ordering? Furthermore, what is a
morphism between Petri nets? A wide variety of answers to
these questions have been explored in the literature.

Different answers are good for different purposes. In the
“individual token philosophy”, we allow a finite set of tokens
in each place, and tokens have their own individual identity. In
the “collective token philosophy”, we merely allow a natural
number of tokens in each place, so it means nothing to switch
two tokens in the same place [14].

Moreover, the idea of using SSMCs to represent net se-
mantics, albeit intuitive, presents subtleties of its own. There
has been a great deal of work on this subject [1], [5], [7],
[11], [12], [24], [28]–[30]. Nevertheless, we still lack a general
answer describing the relations between nets and SSMCs.

II. DRAMATIS PERSONÆ

Our goal is to bring some order to this menagerie. Our
attitude is that though there may be multiple kinds of Petri
net, each should freely generate a monoidal category of an
appropriate sort, and these processes should be left adjoint
functors. We thus consider three kinds of nets, and three
corresponding kinds of monoidal categories:

StrMC SSMC CMC
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On the top row we have:
• StrMC, with strict monoidal categories as objects and

strict monoidal functors as morphisms.
• SSMC, with symmetric strict monoidal categories as

objects and strict symmetric monoidal functors as their
morphisms. A symmetric strict monoidal category is a
symmetric monoidal category whose monoidal structure
is strictly associative and unital; its symmetry may not
be the identity.

• CMC, with commutative monoidal categories as objects
and strict symmetric monoidal functors as morphisms. A
commutative monoidal category is a symmetric strict
monoidal category where the symmetry is the identity.

Monoidal categories of these three kinds are freely generated
by three kinds of nets, on the bottom row of the diagram:
• PreNet, with pre-nets as objects. A pre-net consists of

a set S of places, a set T of transitions, and functions
T

s,t−→ S∗ × S∗, where S∗ is the underlying set of the
free monoid on S. We describe the category PreNet, and
its adjunction with StrMC, in Section IV. These ideas are
due to Bruni, Meseguer, Montanari and Sassone [5].

• Σ-net, with Σ-nets as objects. A Σ-net consists of a set
S and a discrete opfibration T → PS×PSop, where PS
is the free symmetric strict monoidal category generated
by a set of objects S and no generating morphisms.
We describe the category Σ-net in Section V, and its
adjunction with SSMC in Theorem VII.3.

• Petri, with Petri nets as objects. A Petri net, as we will
use the term, consists of a set S, a set T , and functions
T

s,t−→ N[S]×N[S], where N[S] is the free commutative
monoid on S. We describe the category Petri, and its
adjunction with CMC, in Section III. This material can
be found in [1], [24].

These three notions of net obviously have a similar flavor.
Their parallel relationships to the three notions of monoidal
category is made even clearer when we note that regarded
as discrete categories, S∗ and N[S] are respectively the free
monoidal category and the free commutative monoidal cate-
gory on the set S.

Besides the three adjunctions between the categories on the
top row and those on the bottom row, in which the left adjoints
point upward, there are also adjunctions running horizontally
across the diagram: adjoint pairs in the top row and bottom
right and an adjoint triple in the bottom left, with left adjoints
drawn above their right adjoints. In Section VII, we examine
these adjunctions in detail.

Of particular importance are the right adjoint mapping Petri
nets to Σ-nets, and the left adjoint mapping pre-nets to Σ-nets.
We think of these as “embedding” the collective token world
(Petri nets) and the individual token world (pre-nets) into
the unifying context of Σ-nets. In the case of Petri nets, the
functor is literally an embedding (i.e., fully faithful), and since
it is a right adjoint it preserves all limits (though not all
colimits). In the case of pre-nets, the functor is faithful but not
full, but it is an equivalence onto a slice category of Σ-net,
and preserves all colimits and all connected limits (such as
pullbacks). These embeddings also respect the most common

categorical semantics: in Section VII we will show that the
left adjoints PreNet → SSMC and Petri → CMC both factor
through Σ-net.

The images of pre-nets and Petri nets in Σ-nets have a
large intersection, consisting of those nets in which no places
are ever duplicated in the inputs or outputs of any transition.
These are the nets for which there is no difference between the
individual and collective token philosophies. As we shall see,
general Σ-nets allow more fine-grained control than either pre-
nets or Petri nets: for example, some transitions may obey the
individual token philosophy while others obey the collective
token philosophy.

Our work is closely related to that of Kock [18]. He refers to
Σ-nets as “digraphical species”, and sketches a proof, different
from ours, that there is an adjunction relating them to SSMC.
But his focus is on a fourth notion of net: “whole-grain
Petri nets”. He sketches a proof that these are the image
of pre-nets inside Σ-net, which we detail in Section VIII
(so that in particular, whole-grain Petri nets also generate
symmetric strict monoidal categories); but says nothing about
their relationship to Petri nets as traditionally conceived.

III. PETRI NETS

Symmetric monoidal categories are a general algebraic
framework to represent processes that can be performed in
sequence and in parallel. Because Petri nets represent schemat-
ics for such processes, we expect them to freely generate
symmetric monoidal categories. In fact they generate a special
sort of symmetric monoidal categories: commutative ones.

Definition III.1. Let Petri be the category where:
• An object is a Petri net: a pair of functions T

s,t−→ N[S],
where N[S] denotes the underlying set of the free com-
mutative monoid on S.

• A morphism from T1
s1,t1−−−→ N[S1] to T2

s2,t2−−−→ N[S2] is
a pair of functions f : S1 → S2, g : T1 → T2 such that
the following diagram commutes:

N[S1] T1 N[S1]

N[S2] T2 N[S2]

N[f ] g

s1 t1

N[f ]

s2 t2

where N[f ] denotes the unique monoid homomorphism
extending f .

Our concept of Petri net morphism is more restrictive
than that of Meseguer and Montanari [25]: where we have
N[f ] : N[S1]→ N[S2]; they allow an arbitrary monoid homo-
morphism from N[S1] to N[S2].

Definition III.2. A commutative monoidal category is a
commutative monoid object in Cat. Equivalently, it is a strict
monoidal category (C,⊗, I) such that for all objects a and b
and morphisms f and g in C

a⊗ b = b⊗ a and f ⊗ g = g ⊗ f.

A morphism of commutative monoidal categories is a strict
monoidal functor. We write CMC for the category of commu-
tative monoidal categories and such morphisms between them.
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A commutative monoidal category can be seen as a partic-
ularly strict sort of symmetric monoidal category. Ordinarily,
symmetric monoidal categories are equipped with “symmetry”
isomorphisms

σx,y : x⊗ y ∼−→ y ⊗ x

for every pair of objects x and y. In a commutative monoidal
category x⊗y is equal to y⊗x, so we can — and henceforth
will — make it symmetric by choosing σx,y to be the identity
for all x and y. Any morphism of commutative monoidal
categories then becomes a strict symmetric monoidal functor.

The following adjunction shows that Petri nets are the right
sort of generating data for commutative monoidal categories.

Proposition III.3. There is an adjunction

Petri CMC

FPetri

UPetri

whose left adjoint sends a Petri net P to the commutative
monoidal category FPetri(P ) where:
• Objects are markings of P , i.e., elements of the free

commutative monoid on its set of places.
• Morphisms are generated inductively by the following

rules:
– for each place s there is an identity 1s : s→ s
– for each transition τ of P , there is a morphism going

from its source to its target
– for every pair of morphisms f : x→ y and f ′ : x′ →
y′, there is a morphism f ⊗ f ′ : x⊗ x′ → y ⊗ y′

– for every pair of composable morphisms f : x → y
and g : y → z, there is a morphism g ◦ f : x→ z

and quotiented to satisfy the axioms of a commutative
monoidal category.

Proof. This is a special case of [24, Theorem 5.1]. See also
[1, Lemma 9].

As noted in Section I, we view this construction as asso-
ciating to each net a monoidal category of its “executions”.
The objects of this category are markings that accord with
the collective token philosophy: for instance, if p and q are
places, the object 2p + 3q has two tokens on p and three
tokens on q, but no way to distinguish between the former two
tokens or between the latter three. Similarly, the morphisms
in this category are equivalence classes of firing sequences.
This interpretation is particularly captivating if we represent
morphisms in a monoidal category using string diagrams.

However, the equivalence relation on firing sequences that
determines when two define the same morphism is very coarse
when we take the commutative monoidal category freely
generated by a Petri net. Indeed, if f, g : x→ x are morphisms
in a commutative monoidal category, the following sequence
of equations holds:

f

g

x x

x x

=
f

g

x

x

x

x

=

fg

x

x

x

x

=

fg

x

x x x

These equations imply that given any two firing sequences f
and g that start and end at some marking x, the commutative

monoidal category cannot distinguish whether they act inde-
pendently or whether f acts on the tokens already processed by
g. When x is the tensor unit, the equations above hold in any
symmetric monoidal category. But in a commutative monoidal
category, the above equations hold for any object x.

IV. PRE-NETS

The shortcomings of commutative monoidal categories we
presented in the last section are overcome by using symmetric
monoidal categories where the symmetries are not necessarily
identity morphisms. One approach first builds monoidal cat-
egories and then freely adds symmetries. In 1991 Joyal and
Street [15] introduced “tensor schemes”, which can be used to
describe free strict monoidal categories. In 2001, essentially
the same idea was introduced by Bruni, Meseguer, Montanari
and Sassone [5] under the name “pre-nets”. However, for these
authors, the use of pre-nets to describe free strict monoidal
categories was just the first stage of a procedure to obtain free
symmetric strict monoidal categories. We recall this procedure
now.

Definition IV.1. Let PreNet be the category where:

• An object is a pre-net: a pair of functions T
s,t−→ S∗,

where S∗ is the underlying set of the free monoid on S.
• A morphism from T1

s1,t1−−−→ S∗1 to T2
s2,t2−−−→ S∗2 is a

pair of functions f : S1 → S2, g : T1 → T2 such that
the following diagram commutes, where f∗ denotes the
unique monoid homomorphism extending f :

S∗1 T1 S∗1

S∗2 T2 S∗2

f∗ g

s1 t1

f∗

s2 t2

Graphically, a pre-net looks very similar to a Petri net, and we
follow the convention of [2] by decorating arcs with numbers
to indicate their input/output order in a transition, as in:

3

1

2

1

This denotes that the place in the top left is used as the first
and third input of the transition, while the place in the bottom
left is the second input.

Pre-nets give rise to strict monoidal categories as follows.

Proposition IV.2. There is an adjunction

PreNet StrMC

FPreNet

UPreNet

whose left adjoint sends a pre-net Q to the strict monoidal
category where:
• Objects are elements of the free monoid on the set of

places.
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• Morphisms are generated inductively by the following
rules:

– for each place s there is an identity 1s : s→ s
– for each transition τ of Q, there is a morphism going

from its source to its target
– for every pair of morphisms f : x→ y and f ′ : x′ →
y′, there is a morphism f ⊗ f ′ : x⊗ x′ → y ⊗ y′

– for every pair of composable morphisms f : x → y
and g : y → z, there is a morphism g ◦ f : x→ z

and quotiented to satisfy the axioms of a strict monoidal
category.

Proof. This is [24, Prop. 6.1].

The above adjunction can be composed with one defined
in Proposition VII.1 to obtain an adjunction between pre-nets
and strict symmetric monoidal categories:

PreNet StrMC SSMC.

FPreNet FStrMC

UPreNet UStrMC

The composite adjunction

PreNet SSMC

F∗

U∗

is used to obtain the categorical operational semantics of pre-
nets under the individual token philosophy. This adjunction
was first presented by Bruni, Meseguer, Montanari, and Sas-
sone [5] with codomain a full subcategory of SSMC and was
later refined to the above form in [24].

This composite adjunction has also been used to give a
categorical semantics for Petri nets [4], [5], [28]. For this,
given a Petri net P , one first chooses a pre-net Q having
P as its underlying Petri net, and then forms the symmetric
strict monoidal category F∗(Q). However this semantics is not
functorial, due to the arbitrary choice involved.

The category PreNet is better behaved than Petri. The latter
is not even cartesian closed, for essentially the same reasons
described in [6], [23], but the former is cartesian closed, and
even a topos:

Proposition IV.3. The category PreNet is equivalent to a
presheaf category.

Proof. It suffices to construct a category C so that functors
from C to Set are the same as pre-nets. Let C have an object p,
and for every pair of natural numbers (n,m), let C contain an
object t(m,n). Here p stands for ‘places’, while t(m,n) stands
for ‘transitions with m inputs and n outputs’. Besides identity
morphisms, C contains m morphisms si : t(m,n) → p rep-
resenting the source maps and n morphisms tj : t(m,n)→ p
representing the target maps. Composition in C is trivial.

A pre-net T
(s,t)−−−→ S∗ × S∗ can be identified with the

functor C → Set that sends p to the set of places S, sends
the object t(m,n) to the subset of T consisting of transitions
with m inputs and n outputs, and sends the morphisms
si, tj : t(m,n) → p to the functions that map each transition

to its i-th input and j-th output. A morphism of pre-nets (f, g)
can then be identified with a natural transformation between
such functors, with the p-component given by g and with the
t(m,n)-components given by the restrictions of f to the set
of transitions with m inputs and n outputs. Naturality follows
from the commutative diagrams in Definition IV.1.

One downside of pre-nets is that ordering the inputs and
outputs of transitions seems artificial in many applications
where Petri nets are heavily used [11], [31]. This ordering also
greatly restricts the available morphisms between pre-nets. For
example, there is no morphism between the following pre-nets:

3

1

2

1

1

2

3

1

even though there is a morphism between their underlying
Petri nets, in which the ordering information has been forgot-
ten.

Furthermore, in the symmetric strict monoidal category
F∗(Q) coming from a pre-net Q, none of the symmetries
σx,y : x ⊗ y → y ⊗ x are identities, except when x or y is
the unit object. Perhaps more importantly, if a transition in
the pre-net Q gives a morphism

t : x1 ⊗ · · · ⊗ xm → y1 ⊗ · · · ⊗ yn,

where xi, yj are objects coming from places of Q, the com-
posite of t with symmetries that permute the inputs xi and
outputs yj is only equal to f if both these permutations are
the identity.

Thus, the SSMCs obtained from pre-nets exemplify an
extreme version of the individual token philosophy. Not only
does each token have its own individual identity, switching two
tokens before or after executing the morphism corresponding
to a transition always gives a different morphism.

V. Σ-NETS

We have seen that Petri nets generate symmetric monoidal
categories naturally suited to the collective token philosophy,
where the tokens have no individual identity, so it makes no
sense to speak of switching them. On the other hand, we
have just seen that pre-nets generate symmmetric monoidal
categories suited to an extreme version of the individual token
philosophy, in which switching tokens always has an effect.

Now we introduce a new kind of nets, called Σ-nets, which
in some sense lie between these two extremes. In a Σ-net, one
has control over which permutations of the input or output of
a transition alter the morphism it defines and which do not.
This finer ability to control the action of permutations allow
Σ-nets to behave either like Petri nets or pre-nets—or in a
mixed way.

Lemma V.1. There is a forgetful functor

Q : SSMC→ Set
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that sends a symmetric strict monoidal category to its set of
objects and sends a strict symmetric monoidal functor to its
underlying function on objects. Q has a left adjoint

P : Set→ SSMC

that sends a set S to the symmetric strict monoidal category
PS having (possibly empty) words in S as objects, and
permutations as morphisms.

Proof. See Sassone [28, Sec. 3] or Gambino and Joyal [9, Sec.
3.1].

Definition V.2. A Σ-net is a set S together with a functor

N : PS × PSop → Set.

A morphism between Σ-nets PS1×PSop
1

N−→ Set and PS2×
PSop

2
M−→ Set is a pair (g, α) where g : S1 → S2 is a function

and α is a natural transformation filling the following diagram:

PS1 × PSop
1

Set.

PS2 × PSop
2

Pg×Pgop

N

M

α

This defines the category Σ-net.

The definition of Σ-net may seem unintuitive, but it is easily
explained. Suppose N : PS×PSop → Set is a Σ-net. We call
S its set of places. Objects of PS are words of places. Given
m,m′ ∈ PS, we call an element of N(m,m′) a transition
with source m and target m′. In Theorem VII.7 we describe
how to freely generate a symmetric strict monoidal category
C from the Σ-net N . In this construction, the transitions of
N give morphisms that generate all the morphisms in C.

More precisely: the objects of C are words of places. The
tensor product of objects is given by concatenation of words,
and the symmetry in C acts by permuting places in a word.
Each transition t ∈ N(m,m′) gives a morphism t : m → m′

in C, and all other morphisms are generated by composition,
tensor product and symmetries.

Given a transition t ∈ N(m,m′), the action of the functor
N : PS×PSop → Set on morphisms describes what happens
to the corresponding morphism t : m→ m′ when we permute
the places in its source and target: it gets sent to some other
transition (possibly the same one). We say two transitions t ∈
N(m,m′) and u ∈ N(n, n′) are in the same transition class
if and only if there exists a morphism σ : (m,m′) → (n, n′)
in PS × PSop such that

N(σ)(t) = u.

Example V.3. There is a Σ-net N with just two places, say
p and q, and just two transitions, t1 ∈ N(pq, ε) and t2 ∈
N(qp, ε), where ε stands for the empty word. There are two
morphisms in PS × PSop with domain (pq, ε), namely the
identity and the swap (pq, ε)→ (qp, ε). Since there is a unique
function between any two singleton sets, N of this swap must

map t1 to t2. Thus, both t1 and t2 lie in the same transition
class, and this Σ-net has just one transition class.

Example V.4. Now consider a Σ-net M with just two places
p and q and exactly four transitions, with M(pq, ε) = {t1, u1}
and M(qp, ε) = {t2, u2}. We set M of the swap (pq, ε) →
(qp, ε) to act as the function {t1, u1} → {t2, u2} sending
t1 to t2 and u1 to u2. This Σ-net has exactly two transition
classes: t1 and t2 represent one transition class, and u1 and u2
represent the other. Note that if we instead define the action
of M on the swap to send t1 to u2 and t2 to u1, then we
would still have two transition classes; in fact this would be
an isomorphic Σ-net.

Examples V.3 and V.4 illustrate the situation when no place
occurs more than once in the source or target of any transition.
In this case, any two values of the functor N will be related
by at most one morphism in PS × PSop, and the functorial
action of N on such a morphism provides a way to canonically
identify their values.

Example V.5. Next consider a Σ-net O with one place p
and one transition, namely t ∈ O(pp, ε). There are still two
morphisms in PS × PSop with domain (pp, ε), the identity
and the swap, but now both have (pp, ε) as codomain as well.
There is still only one transition class, but now t is mapped
to itself by both morphisms (pp, ε)→ (pp, ε), the identity and
the swap.

Given a group G acting on a set X , the isotropy group
of x ∈ X is the subgroup of G consisting of elements that
map x to itself. Thus, in Example V.5, unlike Example V.4,
we are seeing a transition with a nontrivial isotropy group. In
fact, because permutations act trivially on all transitions, the
Σ-net of Example V.5 belongs to the image of Petri under the
functor Gpet : Petri→ Σ-net described in Proposition VII.4.

Example V.6. Next consider a Σ-net Q with one place p and
precisely two transitions with Q(pp, ε) = {t1, t2}. Suppose
that Q of the identity (pp, ε) → (pp, ε) acts as the identity
function (as it must), while Q of the swap acts by t1 7→ t2
and t2 7→ t1. Then t1 and t2 represent the same transition
class, so there is once again only one transition class. The
isotropy groups of t1 and t2 are trivial. In fact, because
permutations act freely on the transitions in every transition
class, this Σ-net belongs to the image of PreNet under the
functor Fpre : PreNet→ Σ-net described in Theorem VII.3.

Example V.7. Now let us give an example blending features
from Examples V.5 and V.6. For this, we create a Σ-net R that
has one place p and three transitions t1, t2, u ∈ R(pp, ε), such
that t1 and t2 are order-sensitive while u is not. This Σ-net
maps (pp, ε) to {t1, t2, u} and everything else to the empty
set. The action of the swap automorphism of (pp, ε) switches
t1, t2 and fixes u. As a result, this Σ-net has two transition
classes: t1, t2 are both representatives of one transition class,
while u represents the other. This Σ-net is not in the image
of Gpet : Petri → Σ-net or Fpre : PreNet → Σ-net; it mixes
the two worlds.

We now introduce some graphical representations for Σ-
nets. The first depicts a transition class as a three-dimensional
tank containing pictures of the permutations that act trivially
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on an arbitrarily chosen transition in this class; for instance:

On the left is Example V.5, where the identity and the swap
both act trivially. On the right is Example V.6, where only the
identity acts trivially. Examples V.3 and V.7 are instead:

Although each transition class is a set of transitions, and each
tank represents a single transition class, the pictures inside that
tank do not represent the transitions in that class, but rather
the isotropy group of a single transition in the class. For a
given transition class, with m inputs and n outputs, say, the
number of transitions and the size of the isotropy group are
inversely related: their product is the cardinality m!n! of the
total symmetry group Sm × Sn.

Of course, this formalism quickly becomes disadvantageous
for large nets. Another approach is to draw a Σ-net using the
usual two-dimensional representation of a Petri net, with one
node for each transition class, but decorated by the relevant
isotropy group. When this group is trivial, we can omit it. In
this style of drawing, the nets of Examples V.5 and V.6 look
as follows:

S2

In the rest of the paper, we will use the three-dimensional
representation. However, both representations are potentially
misleading, in different ways. The two-dimensional represen-
tation does not show how the isotropy group sits inside the
ambient group Sm×Sn. The three-dimensional representation
indicates this, but it is sensitive to the arbitrary choice of
one transition in each class. For instance, the following three
pictures all represent the same Σ-net, with one transition
class containing three transitions, each with isotropy group
isomorphic to S2. But these three copies of S2 sit inside S3

differently, yielding different three-dimensional pictures.

We do not know whether there is a graphical representation
of Σ-nets that avoids both of these problems.

VI. PERSPECTIVES ON THE CATEGORY Σ-NET

The definition of Σ-nets in Section V gives what may be
called a “profunctorial” perspective: a Σ-net is a functor from
PS × PSop to Set, which is the same as a profunctor from
PS to itself. This perspective will be useful in constructing
the adjunction between Σ-net and SSMC in Theorem VII.7.
However, there are other perspectives on Σ-nets, leading to two
alternative descriptions of Σ-net, useful for other purposes.

A. The presheaf perspective

Theorem VI.1. Σ-net is equivalent to a presheaf category.

Proof. We construct a category D so that functors from D
to Set can be identified with Σ-nets. To construct D, we
take the category C from Proposition IV.3 and throw in extra
automorphisms of each object t(m,n), making its automor-
phism group Sm × Sn. For a source map si : t(m,n) → p
and an automorphism (σ, τ) ∈ Sm × Sn, we set the com-
posite si ◦ (σ, τ) equal to sσ(i). Similarly, for a target map
tj : t(m,n) → p, we set the composite tj ◦ (σ, τ) equal to
tτ(j). Then, for each Σ-net N : PS ×PSop → Set, there is a
corresponding functor ν : D → Set defined as follows. It sends
the object p ∈ D to the set of places of N . It sends each object
t(m,n) ∈ D to the disjoint union of the sets N(a, b) over all
a ∈ PS with length m and b ∈ PS with length n. It sends the
morphisms si, tj : t(m,n)→ p to the functions that map any
transition to its ith input and jth output. Finally, this functor
ν sends the permutations (σ, τ) to the natural actions of the
symmetric group on the transitions of N . For a morphism
of Σ-nets (g, α) : N → N ′, there is a natural transformation
between their functors whose p-component is given by g and
whose t(m,n)-components are given by disjoint unions of the
components of α. One can check that the resulting functor
from Σ-net to SetD is an equivalence.

Theorem VI.1 has a lot of nice consequences, such as:
• Σ-net is complete and cocomplete. This is particularly

important since many compositional approaches to Petri
nets rely on colimits; for example, composition of open
Petri nets is done using pushouts, while tensoring them
is done using coproducts [1].

• Σ-net is a topos, and thus an adhesive category [21], so
it admits a theory of double pushout rewriting [20]. This
is relevant as double pushout rewriting is a widely used
technique to transform graph-like structures in the liter-
ature [8]. The internal logic of toposes is very rich, and
understanding its implications for Σ-nets is an interesting
direction for future work.

Note that Petri is not a presheaf category, whereas the category
of directed graphs is. Indeed, as noted in [17], graphs are
functors C1,1 → Set, where C1,1 is the full subcategory of
the above C (or D) on the objects p and t(1, 1).

The category D in Theorem VI.1 is equivalent to the oppo-
site of Kock’s category of “elementary graphs” [17, 1.5.4].
Thus, Σ-net is equivalent to his category of “digraphical
species” [17, 2.1]. Similarly, C is the opposite of Kock’s
“elementary planar graphs”.
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B. The groupoidal perspective

The profunctorial and presheaf perspectives highlight the
transitions of a Σ-net over its transition classes. Sometimes,
however, we want to work directly with the transition classes;
we now describe a third perspective that permits this.

Firstly, it is well-known [22, Theorem 2.1.2] that a functor
N : PS × PSop → Set is equivalent to a discrete opfibration
T → PS × PSop for some category T . Since PS × PSop is
a groupoid, T is as well. In addition to this, a morphism of
Σ-nets is equivalently a commutative square

T1 T2

PS1 × PSop
1 PS2 × PSop

2

g

Pf×Pfop

Note that this looks much more similar to the definitions of
the categories PreNet and Petri. The set of objects of T here
is the disjoint union of the sets N(p, p′), i.e., the transitions
rather than the transition classes. The transition classes are
the isomorphism classes of the groupoid T . To contract these
down to single objects, we can replace T by an equivalent
groupoid that is skeletal, i.e., there are no morphisms x→ y
for objects x 6= y, or equivalently each isomorphism class
contains exactly one object. After such a replacement the
functor T → PS × PSop is no longer a discrete opfibration,
but it is still faithful. To compensate for this replacement of
discrete opfibrations by faithful functors with skeletal domain,
when defining the morphisms of Σ-nets we have to allow the
squares to commute up to isomorphism rather than strictly.

Theorem VI.2. The category of Σ-nets is equivalent to the
following category:
• Its objects are faithful functors T → PS × PSop, where
S is a set and T is a skeletal groupoid.

• Its morphisms are squares that commute up to specified
isomorphism

T1 T2

PS1 × PSop
1 PS2 × PSop

2

g

∼=θ

Pf×Pfop

modulo the equivalence relation that two such morphisms
(f, g, θ) and (f ′, g′, θ′) are considered equal if f = f ′

and there is a natural isomorphism φ : g ∼=⇒ g′ such that
g

g′

g

Pf × Pfop Pf × Pfop

T1 T2

=

T1 T2

∼=θ′

∼=θ

⇒

φ

PS1 × PSop
1 PS2 × PSop

2 PS1 × PSop
1 PS2 × PSop

2

Note that since T2 → PS2 × PSop
2 is faithful, such a φ is

unique if it exists. Thus, the category described in the theorem
is in fact equivalent to the evident 2-category having as 2-
morphisms natural isomorphisms φ as above.

Proof. Define a category P as in the theorem, but where the
objects allow T to be any groupoid. Then there is a functor

Σ-net→ P , since discrete opfibrations are faithful and strictly
commutative squares also commute up to isomorphism. This
functor is faithful, since if θ and θ′ are identities so is φ, by the
faithfulness of T2 → PS2 × PSop

2 . Moreover, any morphism
in P whose target T2 → PS2×PSop

2 is a discrete opfibration
has a representative that commutes strictly, since we can lift
the isomorphism θ to an isomorphism φ with θ′ an identity.
Thus, the functor Σ-net→ P is also full.

Let the pseudo slice 2-category over a groupoid B be
the 2-category with groupoids over B as objects, triangles
commuting up to natural isomorphism

A A′

∼=θ

B

g

as morphisms, and the evident 2-morphisms [26, Definition
3.2]. Any groupoid over B is equivalent, in the pseudo slice
2-category of B, to a fibration [32, Theorem 6.7], which in the
groupoid case is the same as an opfibration. If f : A → B is
faithful then this opfibration will be as well, so f is equivalent
to a discrete opfibration. Since equivalences in the pseudo slice
2-category yield isomorphisms in P , the functor Σ-net → P
is also essentially surjective, and hence an equivalence.

The category described in the theorem is a full subcategory
of P , so it suffices to show that every object of P is isomorphic
to one where T is skeletal. But any groupoid is equivalent to
a skeletal one, and such an equivalence preserves faithfulness
and yields an isomorphism in P .

Note that the construction in the final paragraph taking a
groupoid to a skeletal one preserves connected components,
while in the output each connected component has exactly one
object. Thus, in the representation described in Theorem VI.2
the objects of the groupoid T really are precisely the transition
classes. Since the transition classes of a Σ-net correspond to
the transitions of a Petri net, we can think of a Σ-net as a
Petri net together with, for each transition, (1) a lifting of its
source and target multisets to words, and (2) an isotropy group
that acts faithfully on those words, i.e., maps injectively to the
subgroup of Sm × Sn that fixes both of those words.

Example VI.3. If we start from a transition in a Petri net
t : 3a + 2b → 4c, then we could lift it to a transition in a
Σ-net by defining t : aaabb → cccc and equipping it with
any subgroup of S3 × S2 × S4, which describes the “degree
of collectivization” of t. If the isotropy group is trivial, then
this particular transition behaves like one in a pre-net—tokens
are “fully individualized”—whereas if it is as large as possible
then it behaves as a Petri net—tokens are “fully collectivized”.
This idea is heavily used in the next section to describe the
adjunctions between Petri, PreNet and Σ-net.

VII. DESCRIPTION OF THE ADJUNCTIONS

Now we describe in detail all the adjunctions between the
categories in play. We again include the diagram of Section II,
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but now with most of the functors labeled.

StrMC SSMC CMC

PreNet Σ-net Petri

FStrMC

UPreNet

UStrMC

FSSMC

UΣ-net UPetri

USSMC

FPreNet

Fpre

Hpre

FΣ-net

Fpet

FPetri

Gpet

(1)

The adjunctions in the top row can be constructed using
standard tools, such as the adjoint functor theorem or the
adjoint lifting theorem.

Proposition VII.1. There is an adjunction

StrMC SSMC.
FStrMC

⊥
UStrMC

Here, UStrMC freely adds symmetries to a strict monoidal
category, while UStrMC sends any symmetric strict monoidal
category to its underlying strict monoidal category.

Proposition VII.2. There is an adjunction

SSMC CMC.
FSSMC

⊥
USSMC

FSSMC takes a symmetric strict monoidal category and imposes
a law saying that all symmetries are identity morphism,
while USSMC sends any commutative monoidal category to its
underlying symmetric strict monoidal category.

The adjunction between Petri and CMC was recalled in
Proposition III.3, while that between PreNet and StrMC was
recalled in Proposition IV.2. We now cover the middle column
and bottom row of the diagram, which are new.

Theorem VII.3. There is a triple of adjoint functors

PreNet Σ-net.

Fpre

Hpre

Gpre

Proof. For this proof it is most convenient to work with the
presheaf perspective. In the proof of Proposition IV.3 we
described a category C such that PreNet ∼= [C,Set] and in
the proof of Theorem VI.1 we described a category D such
that Σ-net ∼= [D,Set]. Recall that D is built by starting with
the objects and morphisms of C and adding new morphisms
and equations. The inclusion gives a functor i : C→ D which
induces a functor

Σ-net ∼= [D,Set]
(−)◦i−−−→ [C,Set] ∼= PreNet

given by precomposition with i. The composite functor above
is the forgetful functor Gpre. Therefore Gpre has a left adjoint
Fpre : PreNet → Σ-net given by left Kan extension along i
and a right adjoint Hpre : PreNet→ Σ-net given by right Kan
extension along i.

Let us spell out what the functors Fpre, Gpre, Hpre do in
detail, using our three-dimensional graphical representation.

Fpre) For this functor we work in the groupoid representa-

tion of Σ-nets. A pre-net T
(s,t)−−−→ S∗×S∗ is sent to

the Σ-net T
Fpre(s,t)−−−−−→ PS×PSop, where T denotes

the discrete groupoid having T as underlying set of
objects. Since T is discrete, the functor Fpre(s, t)
only needs to be defined on objects, which we do by
taking the composite

T
(s,t)−−−→ S∗ × S∗ → PS × PSop

using the fact that S∗ is the set of objects of PS.
A morphism of pre-nets (f, g) : (s1, t1) → (s2, t2)
induces a morphism of Σ-nets: g : T1 → T2 lifts to a
morphism between discrete groupoids and f : S1 →
S2 lifts to a functor PS1 × PSop

1 → PS2 × PSop
2 .

The relevant square as in Theorem VI.2 commutes
strictly.
Fpre takes a pre-net and builds from it a Σ-net with
trivial isotropy groups. Graphically, this amounts to
enclosing every transition of the given pre-net in a
tank:

1
2

1 Fpre7−−−→

In particular, the transition classes of Fpre(N) are
the transitions of N .

Gpre) For this functor we work in the profunctor repre-
sentation. A Σ-net PS × PSop N−→ Set is sent to
the pre-net having S as its set of places and the
disjoint union of all sets N(a, b), for any a, b objects
of PS, as its set of transitions. For each transition,
input and output places are defined using the inverse
image of N . That is, the transitions of GpreN are
the transitions of N , with their grouping into classes
and their isotropy groups forgotten.
We can give a different interpretation of this using
the groupoid perspective. Suppose T N−→ PS×PSop

is a Σ-net. Then for each object t of T such that
N(t) is a pair of strings of length m and n there
will be Sm × Sn/ homT (t, t) transitions in GpreN ,
where Sn denotes the group of permutations over a
string of n elements. Graphically, this is represented
by “exploding” a tank with m inputs and n outputs
and introducing m!n!/k pre-net transitions, where k
is the number of elements in the tank.

Gpre7−−−→ 1 2
2

1

1
1

In the image above, we see the behavior of Gpre on a
Σ-net having a transition with trivial isotropy group,
while in the image below Gpre is used on a Σ-net
having a transition with 2-element isotropy group.

Gpre7−−−→
1

2

1
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Hpre) While Fpre builds as many tanks as we can get from a
pre-net’s transitions, Hpre bundles pre-net transitions
sharing the same inputs/outputs modulo permuta-
tions, whenever they complete their corresponding
symmetry groups. For instance, in the figure below
transitions x and y complete the permutation group
S2×S1, and hence they give rise to the tank denoted
with 〈x, y〉. The same happens for transitions x and
z, giving rise to tank 〈x, z〉.

1
2

2 1

2
1

1
1

1x

y

z

Hpre7−−−→ 〈x, y〉

〈x, z〉

The following pre-net does not have enough tran-
sitions to complete the symmetry group of its in-
puts/outputs. As such, Hpre cannot match this tran-
sition with anything, and does not produce any tank.

1

2

1
Hpre7−−−→

In the following case, the pre-net has a repeated
input. Hpre is then able to match the transtion with
itself, producing a maximally commutative tank.

1
2

1 Hpre7−−−→

Looking at these examples, we see that in general the
transitions of N do not correspond directly to either
the transitions of Hpre(N) or the transition classes
of Hpre(N).

Proposition VII.4. There is an adjunction

Σ-net Petri.
Fpet

Gpet

Proof. Note first that Petri is by definition precisely the
comma category (Set ↓ (N[−] × N[−])). Similarly, if we
identify a Σ-net with a functor N : PS × PSop → Set and
thereby with a discrete opfibration N → PS × PSop, then
Σ-net becomes identified with the full subcategory of the
comma category (Cat ↓ (P (−)× P (−)op)) consisting of the
discrete opfibrations.

Now note that Set is a reflective full subcategory of Cat,
with reflector π0 that takes the set of connected components of
a category. Moreover, we have π0(PS×PSop) ∼= N[S]×N[S].
Thus, Lemma VII.5, proven below (and applied with D = Cat,
C = E = Set, and K = P (−)×P (−)op), shows that we have
an adjunction

(Cat ↓ (P (−)× P (−)op)) (Set ↓ (N[−]× N[−])) = Petri
F

G

in which the left adjoint F applies π0 to both domain and
codomain, and the right adjoint G pulls back along the unit
PS × PSop → N[S]×N[S]. Therefore, it suffices to observe
that this right adjoint takes values in discrete opfibrations,
hence in Σ-net.

Lemma VII.5. Let E be a reflective subcategory of D, with
reflector π : D→ E, and let K : C→ D be a functor where D
has pullbacks. Then there is an adjunction

(D ↓ K) (E ↓ (π ◦K)).
F

G

Proof. Let ηX : X → πX denote the unit of the reflection.
Then for any f : S1 → S2 in C, we have ηKS2 ◦Kf = πKf ◦
ηKS1 by naturality; we denote this common map by ηf . Now
there is a profunctor between (D ↓ K) and (E ↓ (π ◦ K))
defined to take T1 → KS1 and T2 → πKS2 (where T1 ∈ D
and T2 ∈ E) to the set of pairs (f, g) where f : S1 → S2 in C
and g : T1 → T2 in D make the following square commute:

T1 T2

KS1 πKS2.

g

ηf

This profunctor is representable on both sides, because any
such square factors uniquely in both of the following ways:

T1 πT1 T2

KS1 πKS1 πKS2

ηT1

ηKS1 πKf

T1 • T2

KS1 KS2 πKS2.

y

Kf ηKS2

On the left, the factorization is by the universal property of
ηT1

, while on the right it is by the universal property of the
pullback. Therefore, there is an adjunction F a G as desired,
where F takes T1 → KS1 to πT1 → πKS1, and G takes
T2 → πKS2 to the pullback of T2 to KS2.

Note that by construction, this adjunction is a reflection,
i.e., the right adjoint Gpet is fully faithful. We can illustrate
the action of Fpet and Gpet with examples.
Fpet) In the groupoid perspective, this functor takes a Σ-net

T
N−→ PS×PSop and maps it to the Petri net having

the underlying set of objects of T as transitions, S
as places, and input/output functions induced by the
mapping on objects of N . The action on a morphism
(g, f) is obtained by restricting the functor g to its
mapping on objects. Graphically, Fpet deflates tanks,
replacing each tank by a single transition:

Fpet−−−→

Fpet−−−→

In particular, the transitions of Fpet(N) are the
transition classes of N .

Gpet) Petri nets are mapped under Gpet to corresponding
Σ-nets that have the largest isotropy groups possible.
Consider a transition t in a Petri net N . Its inputs
and outputs will be a couple of unordered strings of
length n,m, respectively. Pick any ordering for these
strings, and call them a, b, respectively. Finally, let
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Gt be the subgroup of Sn × Sm that fixes the pair
of strings (a, b).
N is mapped to a Σ-net T

GpetN−−−−→ PS×PSop whose
groupoid T has transitions of N as objects and, for
each t in T , Gt as its group of automorphisms. N
maps t to the ordering (a, b) we have chosen before.
It can be seen that picking different orderings of
the input/output of each transition gives isomorphic
results.
Graphically, out of each Petri net we build a corre-
sponding Σ-net that has its tanks as full as possible:

Gpet7−−−→

Thus, the transition classes of Gpet(N) are the
transitions of N .

Remark VII.6. Note that Fpre and Gpet both build a Σ-net
whose transition classes are the transitions of a pre-net or Petri
net. On the other hand, Gpre and Fpet are “dual”, in that they
build a pre-net or Petri net whose transitions are, respectively,
the transitions or the transition classes of a Σ-net. In particular,
the composite Fpet◦Fpre preserves transitions: it is the functor
PreNet→ Petri that simply forgets the ordering of inputs and
outputs. Its right adjoint Gpre ◦Gpet explodes each transition
of a Petri net into as many transitions of a pre-net as possible,
giving its inputs and outputs all possible orderings.

The last adjunction to construct is the one in the middle
column:

Theorem VII.7. There is an adjunction

Σ-net SSMC.
FΣ-net

⊥
UΣ-net

Two proofs of Theorem VII.7 were sketched by Kock [18,
§§6–7]. Our proof is more similar to the proof of [24, Theorem
5.1], which is a generalization of Propositions IV.2 and III.3
involving a Lawvere theory Q: these two propositions follow
by taking Q to be the theory of commutative monoids and the
theory of monoids, respectively. In that proof, an adjunction
between Q-nets and Q-categories (i.e., Q-algebras in Cat)
was obtained as the composite of two adjunctions where the
intermediate category consists of Q-graphs: graphs internal to
the category of Q-algebras. Note that these Q-graphs have
operations coming from the Lawvere theory Q, which act both
on vertices and edges, but they lack the ability to compose
edges (i.e., morphisms) that one has in a Q-category.

Our desired adjunction here is not a special case of [24,
Theorem 5.1], since the symmetries in a symmetric monoidal
category cannot be represented by a structure on the object
set alone. However, we can perform a similar factorization
through a category containing only the monoidal operations.
We begin by reducing the problem from strict symmetric
monoidal categories to (colored) props.

Definition VII.8. A (colored) prop consists of a set S, a
strict symmetric monoidal category B, and a strict symmetric

monoidal functor i : PS → B that is bijective on objects.
A morphism of props consists of a function S → S′ and a
strict symmetric monoidal functor B → B′ making the evident
square commute. We denote the category of props by PROP.

Lemma VII.9. There is an adjunction

PROP SSMC.
F2

⊥
U2

Proof. For a prop (S,B, i) we define F2(S,B, i) = B. And
for a strict symmetric monoidal category B, we let S be
the set of objects of B, so that we have a strict symmetric
monoidal functor PS → B. Now we factor this functor as a
bijective-on-objects functor i : PS → B′ followed by a fully
faithful one p : B′ → B. Then B′ can be given a symmetric
strict monoidal structure making both i and p strict symmetric
monoidal functors, and we define U2(B) = (S,B′, i).

Therefore, it will suffice to construct an adjunction between
Σ-net and PROP. We work with the profunctor representation
of Σ-nets. Let U1 : PROP → Σ-net be the functor sending
(S,B, i) to (S,N) where N(a1, a2) = homB(i(a2), i(a1)).
This is the functor we aim to construct a left adjoint of. As
in [24], we do this “fiberwise” for a fixed A, then piece the
fiberwise adjunctions together.

Lemma VII.10. We have a commutative triangle

Σ-net PROP

Set

U1

in which the two diagonal functors are split fibrations and U1

is cartesian.

Proof. The two diagonal functors send (S,N) to S and
(S,B, i) to S, respectively. To show the left-hand diagonal
functor is a split fibration, let (S,H) ∈ Σ-net and g : S′ → S;
then (S′, N ◦ (Pg × Pgop)) is the domain of a cartesian
lifting. For the right-hand functor, given (S,B, i) ∈ PROP
and g : S′ → S, the composite i◦g : PS′ → B may no longer
be bijective on objects, but we can factor it as a bijective-on-
objects functor i′ : PS′ → B′ followed by a fully faithful one
g′ : B′ → B. These are both again strict symmetric monoidal
functors, and the induced map (S′, B′, i′) → (S,B, i) is
cartesian. Finally, U1 is cartesian by construction, since g′ is
fully faithful.

Let U1,S : Σ-netS → PROPS denote the restriction of U1

to the fibers over a particular set S. We will construct a left
adjoint F1,S of this functor, then piece these together fiberwise.

Following the proof of [24], we need to decompose the
structure of a prop with object set S into the “monoidal piece”
and the “composition piece”. This can be accomplished as
follows. Batanin and Markl [3] define a duoidal category to
be a category C with two monoidal structures (?, J) and (�, I)
and additional natural morphisms

I → J I → I ? I J � J → J

(A ? B) � (C ? D)→ (A � C) ? (B �D)
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satisfying axioms that say (?, J) is a pseudomonoid structure
on (C, �, I) in the 2-category of lax monoidal functors. It is
�-symmetric if � is a symmetric monoidal structure and the
above maps commute with the symmetry in an evident way.

In a duoidal category, the monoidal structure ? lifts to a
monoidal structure on the category of �-monoids. A ?-monoid
in this monoidal category of �-monoids is called a duoid.
Similarly, if the duoidal category is �-symmetric, then ? lifts to
the category of commutative �-monoids, and a monoid therein
is called a �-commutative duoid.

Lemma VII.11. There is a �-symmetric duoidal structure on
Σ-netS whose category of �-commutative duoids is equivalent
to PROPS .

Proof. Note that Σ-net = Prof(PS, PS) is the hom-category
of PS in the bicategory Prof of categories and profunctors.
Since this is an endo-hom-category in a bicategory, it has a
monoidal structure given by composition in Prof , which we
call ? (thus J is the hom-functor of A). The monoidal structure
� is given by convolution:

(H�K)(x, z) =

∫ a,b,c,d

PS(x, ab)×H(a, c)×K(b, d)×PS(cd, z).

with I(x, y) = PS(x, ε)× PS(ε, y).
A ?-monoid is a monad on PS in the bicategory Prof ,

which is well-known to be equivalent to a category B with a
bijective-on-objects functor PS → B. Applying the Yoneda
lemma, we find that a �-monoid structure on such a B consists
of morphisms

B(a, c)×B(b, d)→ B(ab, cd)

that are suitably compatible. This extends the monoidal struc-
ture of PS to the arrows of B (it is already defined on the
objects of B since they are the same as the objects of A).
Compatibility with the duoidal exchange morphism says that
this action is functorial, while compatibility with the map
J � J → J says that it extends the functorial action of the
monoidal structure on PS. The associativity and unitality of
a �-monoid says B has a strict monoidal structure and the
functor PS → B is strict monoidal. Finally, the symmetry
of � switches H and K and composes with the symmetry
isomorphisms in PS on either side; thus �-commutativity of
a duoid makes B a symmetric strict monoidal category and
PS → B a strict symmetric monoidal functor.

In fact, an analogous result holds with PS replaced by any
symmetric monoidal category. A more abstract construction
of this duoidal structure was given by Garner and López
Franco [10, Proposition 51], while the identification of its
duoids follows from their Proposition 49 and the remarks after
Proposition 54. Note that the adjective “commutative” in [10]
is used with a different meaning than ours; we repeat that for
us, “�-commutative” simply means that the monoid structure
with respect to � is commutative in the ordinary sense for a
monoid object in a symmetric monoidal category.

Note that both monoidal structures ? and � of Σ-netS
preserve colimits in each variable. We can now work at a
higher level of abstraction.

Lemma VII.12. For any cocomplete �-symmetric duoidal
category C such that ? and � preserve colimits in each
variable, the forgetful functor

� : CommDuoid(C)→ C

has a left adjoint.

Proof. Recall that free commutative monoids exist in any
cocomplete monoidal category whose tensor product preserves
colimits in each variable, given by

FX =
∐
n

X�n/Σn

where X�n/Σn denotes the nth tensor power of X quotiented
by the action of the nth symmetric group. Indeed, commutative
monoids are monadic over such a category. Thus, the category
of commutative �-monoids in our C is monadic over C.

Moreover, since � preserves colimits in each variable, by
standard arguments it preserves reflexive coequalizers and
sequential colimits in both variables together. Thus X 7→ X�n

also preserves reflexive coequalizers and sequential colimits,
hence so does the functor F and thus the monad for com-
mutative �-monoids. It follows that reflexive coequalizers and
sequential colimits in the category of commutative �-monoids
are computed as in C, and therefore are preserved in each
variable by the lifted tensor product ?. Therefore, by [19], the
free ?-monoid on a commutative �-monoid exists. Composing
these two free constructions, we find that free �-commutative
duoids exist.

Lemma VII.13. There is an adjunction

Σ-net PROP.
F1

⊥
U1

Proof. By Lemmas VII.11 and VII.12, each fiber functor U1,S

has a left adjoint F1,S ; thus it remains to piece these adjoints
together. Suppose (S′, N) ∈ Σ-net and (S,B, i) ∈ PROP.
By Lemma VII.10, a morphism (S′, N) → U1(S,B, i) is
equivalently given by a function g : S′ → S and a morphism

(S′, N)→ U1,S′(S
′, B′, i′) in Σ-netS′ , where PS′ i

′

−→ B′
g′−→

B is the factorization of i◦Pg as a bijective-on-objects functor
followed by a fully faithful one. But the latter morphism
is equivalently a morphism F1,S′(S

′, N) → (S′, B′, i′) in
PROPS′ , hence a morphism F1,S′(S

′, N) → (S,B, i) in
PROP. Thus, defining F1(S′, N) = F1,S′(S

′, N) yields a left
adjoint to U1. (Note that it is unnecessary to ask whether F1

is cartesian.)

Proof of Theorem VII.7. Combining Lemma VII.9 and VII.13
we obtain the composite adjunction:

Σ-net PROP SSMC.
F1

⊥
F2

⊥
U1 U2

We end this section by considering the commutativity
properties of the squares in eq. (1).

Proposition VII.14. There is a natural isomorphism Gpre ◦
UΣ-net

∼= UPreNet ◦ UStrMC. Therefore, there is also a natural
isomorphism FStrMC ◦ FPreNet

∼= FΣ-net ◦ Fpre.
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Proof. With our precise definitions, the first isomorphism is
actually a strict equality: both functors take a symmetric strict
monoidal category C to the pre-net whose places are the
objects of C and whose transitions from a word p to a word
q are the morphisms in C from the tensor product of p to
the tensor product of q. The second isomorphism follows by
passage to left adjoints.

Recalling from Section IV that the composite FStrMC ◦
FPreNet has been used to give a categorical semantics for pre-
nets, we see that this semantics factors through Σ-nets.

Proposition VII.15. There is a natural isomorphism Gpet ◦
UPetri

∼= UΣ-net ◦ USSMC. Therefore, there is also a natural
isomorphism FSSMC ◦ FΣ-net

∼= FPetri ◦ Fpet.

Proof. Again, the first isomorphism is a strict equality: both
functors take a commutative monoidal category C to the Σ-net
whose places are the objects of C and whose transitions from
p to q are the morphisms in C from the tensor product of p to
the tensor product of q, with symmetries acting trivially. The
second isomorphism follows by passage to left adjoints.

Though analogous to Proposition VII.14, Proposition VII.15
does not imply that the categorical semantics of Petri nets
factors through Σ-nets. However, that is also true:

Proposition VII.16. There is a natural isomorphism FPetri
∼=

FSSMC ◦ FΣ-net ◦Gpet.

Proof. Let N be a Petri net and C a commutative monoidal
category; since Gpet is fully faithful we have natural isomor-
phisms

Petri(N,UPetri(C)) ∼= Σ-net(Gpet(N), Gpet(UPetri(C)))
∼= Σ-net(Gpet(N), UΣ-net(USSMC(C)))
∼= SSMC(FΣ-net(Gpet(N)), USSMC(C))
∼= CMC(FSSMC(FΣ-net(Gpet(N))), C).

Thus FSSMC ◦ FΣ-net ◦ Gpet is left adjoint to UPetri, hence
isomorphic to FPetri.

VIII. RELATION TO WHOLE-GRAIN PETRI NETS

We now clarify the relation of our work to Kock’s “whole-
grain Petri nets” [18]. We show that a whole-grain Petri net
can be thought of as a special sort of Σ-net: one that is free
on a pre-net. We first recall Kock’s definition:

Definition VIII.1. A whole-grain Petri net is a diagram

S I T O S

in which the fibers of the functions I → T and O → T are
finite. A morphism of whole-grain Petri nets, sometimes called
an etale map, is a diagram

S I T O S

S′ I ′ T ′ O′ S′

y x

This defines the category WGPet.

Theorem VIII.2. The category WGPet is equivalent to the
full image of Fpre : PreNet → Σ-net. In other words, there
are functors

PreNet WGPet Σ-net
Z1 Z2

such that Z1 is essentially surjective, Z2 is fully faithful, and
the composite Z2 ◦ Z1 is isomorphic to Fpre.

Proof. Given a pre-net s, t : T → S∗ × S∗, let I be the set
of transitions u ∈ T equipped with a choice of an element of
s(u), and define O similarly using t(u). There are forgetful
functions I → T and O → T , and maps I → S (resp. O → S)
that select the chosen element of s(u) (resp. t(u)). This defines
a whole-grain Petri net Z1(s, t). Note that the fibers of I → T
and O → T are not just finite but equipped with a linear
ordering, and the morphisms in the image of Z1 (which is
faithful) are precisely those that preserve these orderings.

To see that Z1 is essentially surjective, given a whole-grain
Petri net N we choose linear orderings on each fiber of the
maps I → T and O → T . These orderings associated each
element of T to two elements of S∗, yielding a pre-net whose
image under Z1 is isomorphic to N .

Now, given a whole-grain Petri net S ← I → T ← O →
S, we define a Σ-net in the presheaf perspective. Its set of
places is S, and its (m,n)-transitions are elements u ∈ T
equipped with a linear ordering on the fibers of I and O over
u, which we require to have m and n elements respectively.
These linear orderings enable us to define the source and target
maps picking out places, while the permutations act on the
linear orderings. This defines the functor Z2.

Note that the set T in a whole-grain Petri net N is naturally
isomorphic to the set of transition classes of Z2(N). Thus,
to show that Z2 is fully faithful it remains to show that a
morphism α : Z2(N) → Z2(N ′) uniquely determines the
maps I → I ′ and O → O′. Given i ∈ I lying over t ∈ T ,
choose any ordering on the fibers over t, in which i appears as
the kth element of its fiber. This choice determines a transition
t̂ of Z2(N), and hence a transition α(t̂) of Z2(N ′), which is
an element α̌(t̂) of T ′ with ordered fibers. Then the function
I → I ′ can and must send i to the kth element of the I-
fiber over α̌(t̂). This is independent of the choice of ordering
because α commutes with the permutation actions, and it is
straightforward to check that it indeed defines a morphism
N → N ′.

Finally, the composite Z2 ◦ Z1 preserves the set of places
and replaces each (m,n)-transition by m!n! transitions with
free permutation action; but this is the same as Fpre.

Another construction of the functor Z2 appears in [18], as a
restricted Yoneda embedding or “nerve”. Recall the categories
C and D from Proposition IV.3 and Theorem VI.1. In fact D is
the full image of the composite of the Yoneda embedding C ↪→
[Cop,Set] ' PreNet with Z1 : PreNet → WGPet; we can
then define Z2 as the composite WGPet→ [WGPetop,Set]→
[Dop,Set] ' Σ-net. In addition, Theorem VIII.2 can be
viewed as a two-sided version of the relationship between
symmetric and nonsymmetric collections, as in [16, 2.4.4].
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IX. CONCLUSION AND FUTURE WORK

In this work we have systematized the theory of Petri
nets, their variants, and their categorical semantics. To this
end, we have shown that the notion of Σ-net, almost absent
from standard Petri net literature, is in fact central. Our
framework gives a consistent view of the relations between
these interacting notions of net in terms of adjunctions, such
that the most important adjunctions present in the literature
can be recovered as composites of our fundamental ones.

Our work makes substantial use of tools from homotopy
theory and related fields, such as groupoids and fibrations. We
believe this will open up exciting new directions of research in
the study of distributed systems and network theory in general.

In fact, the relationships between the various notions of
net in our work have analogues in topology. On one hand,
a manifold can always be given “local coordinates”, but it
is too restrictive to ask that such coordinates be preserved
strictly by maps between manifolds. Such coordinates can be
regarded as analogous to the orderings on sources and targets
in a pre-net. On the other hand, when a group acts on a
manifold, the quotient topological space may no longer be
a manifold, but has singularities at points of non-free action.
This “coarse moduli space” can be regarded as analogous to a
Petri net, where symmetry information has been lost. Kock’s
whole-grain Petri nets are analogous to abstract manifolds
themselves: they are free of undesirable “coordinates”, but
neither can they have singularities. Finally, our Σ-nets play
the role of orbifolds, coordinate-free manifold-like structures
that retain the information of “isotropy groups” at singular
points, yielding a better-behaved notion of quotient.
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