
ANGULAR MOMENTUM: AN APPROACH TO
COMBINATORIAL SPACE-TIME
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I want to describe an idea which is related to other things that were
suggested in the colloquium, though my approach will be quite different. The
basic theme of these suggestions have been to try to get rid of the continuum
and build up physical theory from discreteness.

The most obvious place in which the continuum comes into physics is the
structure of space-time. But, apparently independently of this, there is also
another place in which the continuum is built into present physical theory.
This is in quantum theory, where there is the superposition law: if you have
two states, you’re supposed to be able to form any linear combination of
these two states. These are complex linear combinations, so again you have
a continuum coming in—namely the two-dimensional complex continuum—
in a fundamental way.

My basic idea is to try and build up both space-time and quantum me-
chanics simultaneously—from combinatorial principles—but not (at least in
the first instance) to try and change physical theory. In the first place it
is a reformulation, though ultimately, perhaps, there will be some changes.
Different things will suggest themselves in a reformulated theory, than in the
original formulation. One scarcely wants to take every concept in existing
theory and try to make it combinatorial: there are too many things which
look continuous in existing theory. And to try to eliminate the continuum by
approximating it by some discrete structure would be to change the theory.
The idea, instead, is to concentrate only on things which, in fact, are discrete
in existing theory and try and use them as primary concepts—then to build
up other things using these discrete primary concepts as the basic building
blocks. Continuous concepts could emerge in a limit, when we take more and
more complicated systems.

The most obvious physical concept that one has to start with, where
quantum mechanics says something is discrete, and which is connected with
the structure of space-time in a very intimate way, is in angular momentum.
The idea here, then, is to start with the concept of angular momentum—
here one has a discrete spectrum—and use the rules for combining angular
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momenta together and see if in some sense one can construct the concept of
space from this.

One of the basic ideas here springs from something which always used
to worry me. Suppose you have an electron or some other spin 1

2
h̄ particle.

You ask it about its spin: is it spinning up or down? But how does it know
which way is ‘up’ and which way is ‘down’? And you can equally well ask
the question whether it spins right or left. But whatever question you ask
it about directions, the electron has only just two directions to choose from.
Whether the alternatives are ‘up’ and ‘down’, or ‘right’ and ‘left’ depends on
how things are connected with the macroscopic world.

Also you could consider a particle which has zero angular momentum.
Quantum mechanics tells us that such a particle has to be spherically sym-
metrical. Therefore there isn’t really any choice of direction that the particle
can make (in its own rest-frame). In effect there is only one ‘direction’. So
that a thing with zero angular momentum has just one ‘direction’ to choose
from and with spin one-half it would have two ‘directions’ to choose from.
Similarly, with spin one, there would always be just three ‘directions’ to
choose from, etc. Generally , there would be 2s + 1 ‘directions’ available to
a spin s object.

Of course I don’t mean to imply that these are just directions in space
in the ordinary sense. I just mean that these are the choices available to
the object as regards its state of spin. That is, however we may choose to
interpret the different possibilities when viewed on a macroscopic scale, the
object itself is ‘aware’ only that these are the different possibilities that are
open to it. Thus, if the object is in an s-state, there is but one possibility
open to it. If it is in a p-state there are three possibilities, etc., etc. I don’t
mean that these possibilities are things that from a macroscopic point of
view we would necessarily think of as directions in all cases. The s-state is
an example of a case where we would not!

So we oughtn’t at the outset to have the concept of macroscopic space-
direction built into the theory. Instead, we ought to work with just these
discrete alternatives open to particles or to simple systems. Since we don’t
want to think of these alternatives as referring to pre-existing directions of
a background space—that would be to beg the question—we must deal only
with total angular momentum (j-value) rather than spin in a direction (m-
value).

Thus, the primary concept here has to be the concept of total angular
momentum not the concept of angular momentum in, say, the z-direction,
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because: which is the z-direction?
Imagine, then, a universe built up of things like that shown in fig. 1.

These lines may be thought of as the world-lines of particles. We can view
time as going in one direction, say, from the bottom of the diagram to the
top. But it turns out, really, that it’s irrelevant which way time is going. So
I don’t want to worry too much about this.

I’m going to put a number on each line. This number, the spin-number

Fig. 1

will have to be an integer. It will represent twice the angular momentum, in
units of h̄. All the information I’m allowed to know about this picture will
be just this diagram (fig. 2): the network of connections and spin numbers
3, 2, 3, . . . like that. I should say

Fig. 2
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that the picture I want to give here is just a model. Although it does describe
a type of idealized situation exactly according to quantum theory, I certainly
don’t want to suggest that the universe ‘is’ this picture or anything like that.
But it is not unlikely that some essential features of the model that I am
describing could still have relevance in a more complete theory applicable to
more realistic situations.

I have referred to these line segments as representing, in some way, the
world-lines of particles. But I don’t want to imply that these lines stand just
for elementary particles (say). Each line could represent some compound
system which separates itself from other such systems for long enough that
(in some sense) it can be regarded as isolated and stationary, with a well-
defined total angular momentum n× 1

2
h̄. Let us call such a system or particle

an n-unit. (We allow n = 0, 1, 2, . . .) For the precise model I am describing,
we must also imagine that the particles or systems are not moving relative
to one another. They just transfer angular momentum around, regrouping
themselves into different subsystems, perhaps annihilating one another, per-
haps producing new units. In the diagram (fig. 2), the 3-unit at the bottom
on the left splits into a 2-unit and another 3-unit. This second 3-unit com-
bines with a 1-unit (produced in the break up of a 2-unit into two 1-units) to
make a new 2-unit, etc., etc. It is only the topological relationship between
the different segments, together with the spin-number values, which is to
have significance. The time-ordering of events will actually play no role here
(except conceptually). We could, for example, read the diagram as though
time increased from the left to the right, rather than from the bottom to the
top, say.

Angular momentum conservation will be involved when I finally give the
rules for these diagrams. These rules, though combinatorial, are actually
derived from the standard quantum mechanics for angular momentum. Thus,
in particular, the conservation of total angular momentum must be built into
the rules.

Now, I want to indicate answers to two questions. First, what are these
combinatorial rules and how are we to interpret them? Secondly, how does
this enable us to build up a concept of space out of total angular momentum?
In order not to get bogged down at this stage with too much detail, I shall
defer, until later on, the complete definition of the combinatorial rules that
will be used. All I shall say at this stage is that every diagram, such as fig. 2
(called a spin-network) will be assigned a non-negative integer which I call
its norm. In some vague way, we are to envisage that the norm of a diagram
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gives us a measure of the frequency of occurrence of that particular spin-
network in the history of the universe. This is not actually quite right—I
shall be more precise later—but it will serve to orient our thinking. We shall
be able to use these norms to calculate the probabilities of various spin values
occurring in certain simple ‘experiments’. These probabilities will turn out
always to be rational numbers, arising from the fact that the norm is always
an integer. Given any spin-network, its norm can be calculated from it in a
purely combinatorial way. I shall give the rule later.

But first let me say something about the answer to the second question.
How can I say anything about directions in space, when I only have the non-
directional concept of total angular momentum? How do I get ‘m-values’ out
of j-values, in other words?

Clearly we can’t do quite this. In order to know what the ‘m-value’
of an n-unit is, we would require knowledge of which direction in space is
the ‘z-direction’. But the ‘z-direction’ has no physical meaning. Instead,
we may ask for the ‘orientation’ of one of our n-units in relation to some
larger structure belonging to the system under consideration. We need some
larger structure which in fact does give us something that we may regard
as a well-defined ‘direction in space’ and which could serve in place of the
‘z-direction’. As we have seen, a structure of spin zero, being spherically
symmetrical, is no good for this; spin 1

2
h̄ is not much better; spin h̄ only

a little better; and so on. Clearly we need a system involving a fairly large
total angular momentum number if we are to obtain a reasonably well-defined
‘direction’ against which to test the ‘spin direction’ of the smaller units. We
may imagine that for a large total angular momentum number N , we have
the potentiality, at least, to define a well-defined direction as the spin axis of
the system. Thus, if we define a ‘direction’ in space as something associated
with an N -unit with a large N value (I call this a large unit), then we can
ask how to define angles between these ‘directions’. And if we can decide on
a good way of measuring angles, we can then ask the question whether the
angles we get are consistent with an interpretation in terms of directions in a
Euclidean three-dimensional space, or perhaps in some other kind of space.

How, then, are we to define an angle between two large units? Well, we
do this by performing an ‘experiment’. Suppose we detach a 1-unit (e.g. an
electron, or any other spin 1

2
h̄-particle) from a large N -unit in such a way

as to leave it as an (N − 1)-unit. We can then re-attach the 1-unit to some
other large unit, say an M -unit. What does the M -unit do? Well (according
to the rules we are allowed here) it can either become an (M − 1)-unit or

5



an (M + 1)-unit. There will be a certain probability of one outcome and a
certain probability of the other. Knowing these probability values, we shall
have information as to the angle between the N -unit and the M -unit. Thus,
if our two units are to be ‘parallel’, we would expect zero probability for the
M − 1 value and certainty for the M + 1 value. If the two units are to be
‘anti-parallel’ we would expect exactly the reverse probabilities. If they are
‘perpendicular’, then we would expect equal probability values of 1

2
, for each

of the two outcomes. Generally, for an angle θ between the directions of the
two large units we would expect a

Fig. 3

probability 1
2
− 1

2
cos θ for the M -unit to be reduced to an (M − 1)-unit and

a probability 1
2

+ 1
2

cos θ for it to be increased to an (M + 1)-unit. Let me
draw a diagram to represent this experiment (fig. 3). Here κ represents some
known spin-network. By means of a precise (combinatorial) calculational
procedure—which I shall describe shortly—we can calculate, from knowl-
edge of the spin-network κ, the probability of each of the two possible final
outcomes. Hence, we have a way of getting hold of the concept of Euclidean
angle, starting from a purely combinatorial scheme.

As I remarked earlier, these probabilities will always turn out to be ra-
tional numbers. You might think, then, that I could only obtain angles with
rational cosines in this way. But this would be a somewhat misleading way of
viewing the situation. With a finite spin-network with finite spin-numbers,
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the angle can never be quite well-enough defined. I can work out numerical
values for these ‘cosines of angles’ for a finite spin-network, but these ‘angles’
would normally not quite agree with the actual angle of Euclidean space until
I go to the limit.

The view that I am expressing here is that rational probabilities are to be
regarded as something which can be more primitive than ordinary real num-
ber probabilities. I don’t need to call upon the full continuum of probability
values in order to proceed with the theory. A rational probability p = m/n
might be thought of as arising because the universe has to make a choice
between m alternative possibilities of one kind and n alternative possibilities
of another—all of which are to be equally probable. Only in the limit, when
numbers go to infinity do we expect to get the full continuum of probability
values.

Fig. 4

As a matter of fact, it was this question of rational values for primitive
probabilities arising in nature, which really started me off on this entire
line of thought concerning spin-networks, etc. The idea was to find some
situation in nature which one might reasonably regard as giving rise to a
‘pure probability’, I am not really sure whether it is fair to assume that ‘pure
probabilities’ exist in nature, but by these I mean probabilities (necessarily
quantum mechanical) whose values are determined by nature alone and not
in principle influenced by our ignorance of initial conditions, etc. I suppose
I might have thought of branching ratios in particle decays as a possible
example. Instead, I was led to consider a situation of the following type.

Two spin zero particles each decay into pairs of spin 1
2
h̄ particles. Two of

the spin 1
2
h̄ particles then come together, one from each pair, and combine

to form a new particle (fig. 4). What is the spin of this new particle? Well,
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it must be either zero or h̄, with respective probabilities 1
4

and 3
4

(assuming
no orbital components contribute, etc.). Although you can see that there
are objections even here to regarding this as giving a ‘pure probability’,
at least the example served as a starting point. (This example was to some
extent stimulated by Bohm’s version of the Einstein-Rosen-Podolsky thought
experiment, which it somewhat resembles.) The idea, then, is that any ‘pure
probability’ (if such exists) ought to be something arising ultimately out of a
choice between equally probable alternatives. All ‘pure probabilities’ ought
therefore, to be rational numbers.

Fig. 5

But let me leave all this aside since it doesn’t affect the rest of the dis-
cussion. Actually, I haven’t quite finished my ‘angle measuring experiment’,
so let me return to this.

Let us consider the following particular situation. Suppose we have a
number of disconnected systems, each producing a large N -unit. There are
to be absolutely no connections between them (fig. 5).

Fig. 6

Let me try to measure the ‘angle’ between two of them by doing one of the
‘experiments’ I described earlier. I detach a 1-unit from one of the N -units
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in such a way as to leave it as an (N − 1)-unit. Then I reattach the 1-unit
to one of the other N -units (fig. 6). According to the rules (cf. later) it will
follow that the probability of the second N -unit to become an (N ± 1)-unit
is 1

2
(N + 1± 1)/(N + 1). These two probabilities become equal in the limit

N →∞. Thus, if we are to assign an ‘angle’ between these units, then, for N
large, this would have to be a right-angle. This is just using the probability
blindly. I would similarly have to say, of any other pair of the N -units,
that they are at right-angles. It would seem that I could put any number
of N -units at right-angles to each other. In this instance I have drawn five.
Does this mean that we get a five-dimensional space?—or an∞-dimensional
space?

Clearly I have not done things quite right. There are no connections be-
tween any of the N -units here, so one would like to think of the probabilities
that arise out of one of these experiments as being not just due to the angle
between the N -units (if they have an angle in some sense), but also due to
the ‘ignorance’ implicit in the set-up. That is, we think of the probabilities
as arising in two different ways. In the first instance, probabilities can arise
in this type of experiment, if we have a definite angle between two spin-
ning bodies (as we have seen). These are the genuine quantum mechanical
probabilities. But, in the second instance, we may just be uncertain as to
what the angle is between the two bodies. This lack of knowledge, concern-
ing the history (or origins) of the two bodies, will give us a contribution to
the probability value—an ignorance factor—which will serve to obscure the
meaning of the probability in terms of angles. In the present instance, we are
allowed absolutely no information concerning the interconnections between
the different N -units, so the probability is
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Fig. 7

not really due to ‘angle’ at all. In this extreme case, the probability is entirely
‘ignorance factor’. In general, the two effects will be mixed up, so we shall
need a means of separating them.

Let me change the picture a bit. I’ll put in some ‘known’ connecting
network (now denoted by κ) and have two large units coming out, as in fig. 7.
I do one of these experiments, but then repeat the experiment. Suppose the
N -unit is reduced to an (N − 1)-unit and then to an (N − 2)-unit. The
M -unit becomes an (M ± 1)-unit and then an (M ± 2)-unit, or an M -unit
again (fig. 8). The question is:

10



Fig. 8

is the probability of the second experiment influenced by the result of the
first experiment? If this is essentially an ‘ignorance’ situation, where one
doesn’t initially know such about how the spin axes are pointing, then the
result of the first experiment provides us with some information as to the
relative directions of the spin axes. Therefore, the probabilities in the sec-
ond experiment will be altered by the knowledge of the result of the first
experiment.∗

If the probabilities calculated for the second experiment are not substan-
tially altered by the knowledge of the result of the first experiment, then I say
that the angle between the two large units is essentially well-defined. If they
are substantially altered by the results of the first experiment, then there is
a large ‘ignorance’ factor involved, and the probabilities arise not just from
‘angle’.

∗It should be borne in mind that all these probability values are simply calculated here,
from knowledge of the spin-networks involved. The ‘experiments’ are really theoretical
constructions. However, it would be possible (in principle—with the usual reservations)
to measure these probabilities experimentally, by simply repeating the experiment many
times, each time reconstructing the spin-network afresh.
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Fig. 9

Suppose, now, we have the system shown in fig. 9, which has a number
of large units emerging, and suppose that it happens to be the case that the
angle between any two of them is well-defined in the sense I just described.
(All the numbers A,B, . . . are large compared with unity; I can do a few
odd experiments which do not much change these numbers.) Then there is a
theorem which can be proved to the effect that these angles are all consistent
with angles between directions in Euclidean three-dimensional space.

Now, should I be in any way surprised by this result? Admittedly I should
have been surprised if the method gave me any different space; but on the
other hand, it is not completely clear to me that the result is something
I could genuinely have inferred beforehand. Let me mention a number of
curious features of the theory in this context. In the first place, suppose I
set the situation up with wave functions and everything, and work according
to ordinary quantum mechanical rules. I have these particles (or systems)
with large angular momentum, and I finally find out that I get these angles
consistent with directions in Euclidean three-dimensional space. I never, at
any stage, specified that these large angular momentum systems should, in
fact, correspond to bodies which do have well-defined directions (as rotation
axes). There are states with large total angular momentum (e.g. m = 0
states) which point all over the place, not necessarily in any one direction.
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I can start from some given Euclidean 3-space and use an ordinary Carte-
sian description in terms of x, y, z. I can use particles (or systems) with large
total angular momentum, but which do not happen to give well-defined di-
rections in the original space. Then I work out the ‘angles’ between them
and find that these angle do not correspond to anything I can see as angles
in the original description, but they are nevertheless consistent with the an-
gle between directions in some abstract Euclidean three-dimensional space. I
therefore take the view that the Euclidean three-dimensional space that I get
out of all this, using probabilities, etc. is the real space, and that the original
space, with its x, y, z’s that I wrote down, is an irrelevant convenience, like
co-ordinates in general relativity, where one writes down any co-ordinates
which don’t necessarily mean anything. The central idea is that the system
defines the geometry. If you like, you can use the conventional description
to fit the thing into the ‘ordinary space-time’ to begin with, but then the
geometry you get out is not necessarily the one you put into it. So I don’t
know whether I should be surprised or not by the fact that I actually get the
right geometry in the end.

There is a second aspect of this work that I think I regarded as slightly
surprising at first. This is the fact that although no complex numbers are ever
introduced into the scheme, we can still build up the full three-dimensional
array of directions, rather than, say, a two-dimensional subset. To represent
all possible directions as states of spin of a spin 1

2
h̄ particle, we need to take

complex linear combinations (in the conventional formalism). Here we only
use rational numbers—and complex numbers cannot be approximated by
rational numbers alone! Again, the answer seems to be that the space I end
up with is not really the ‘same’ space as the (x, y, z)-space that I could start
with—even though both are Euclidean 3-spaces.

One might ask whether corresponding rules might be invented which lead
to other dimensional schemes. I don’t in fact see a priori why one shouldn’t
be able to invent rules, similar to the ones I use, for spaces of other di-
mensionality. But I’m not quite sure how one would do this. Also, it’s not
obvious that the whole scheme for getting the space out in the end would
still work. The rules I use are derived from the irreducible representations of
SO(3). These have some rather unique features.

Now, from what I’ve said so far, you might wonder whether you would
just scatter the numbers on the network at random. Actually, you can if
you like, but unless you are a bit careful the resulting spin-network will have
zero norm. And if the norm is zero, then the situation represented by the
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spin-network a not realizable (i.e. zero probability) according to the rules of
quantum mechanics.

There are, in fact, two simple necessary requirements which must be
satisfied at each vertex of a spin-network, for its norm to be non-zero. Notice
first that all the spin-networks that I have explicitly drawn have the property
that precisely three edges (i.e. units) come together at each vertex. (This isn’t
one of the ‘requirements’ I am referring to. It’s just that I don’t know how
one would handle more general types of vertex within the scheme.) Suppose
we have a vertex at which an a-unit, a b-unit and a c-unit come together
(fig. 10).

Fig. 10

Then for a spin-network containing the vertex to have a non-zero norm, it is
necessary that the triangle inequality hold:

a+ b + c ≥ 2 max(a, b, c) ;

and furthermore that there be conservation of fermion number (mod 2):

a+ b + c is even.

These are, of course, properties that one would want to hold in real physical
processes, with the interpretations that I have given to the spin-networks.

But even if these requirements hold at every vertex, the spin-network may
still have zero norm. For example, each of the two types of spin-network
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shown in fig. 11 has zero norm, where n 6= 0 in the first case and n 6= m the
second. In each case, the shaded portion represents some spin-network with
no other free ends. In fact, the

Fig. 11

Fig. 12

first is effectively a special case of the second, with m = 0. This is because
any 0-unit can be omitted from a spin-network (if we also suitably delete
the relevant vertices) without changing the norm. We may interpret the
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vanishing of the norm whenever n 6= m in the second case as an expression
of conservation of total angular momentum.

In addition to these cases, there are many particular spin-networks which
turn out to have zero norm. One example is shown in fig. 12. But so far I
have only been giving particular cases. Let us now pass to the general rule.

I shall give the definition of the norm in terms of a closely related concept,
namely, what I shall call the value of a closed oriented spin-network. I call
a spin-network closed if it has no free ends (e.g. analogous to a disconnected
vacuum process). A spin-network which is not closed will not be assigned
a value. The definition of orientation for a spin-network is a little difficult
to give concisely. Any spin-network can be assigned two alternative orienta-
tions. Fixing the orientation of a closed spin-network will serve to define the
sign of its value (which can be positive or negative). Roughly speaking the
orientation assigns a cyclic order to the three units attached to each vertex—
but if we reverse the cyclic order at any even number of vertices this is to
leave the orientation unchanged. The orientation will change, on the other
hand, if the cyclic order is reversed at an odd number of vertices.

I shall adopt the convention, when drawing spin-networks, that the ori-
entation is to be fixed by the way that the spin-network is depicted on the
plane. At each vertex we specify ‘counter-clockwise’ as the cyclic order for
the three units attached to the vertex. This defines the spin-network’s orien-
tation. The diagrams in fig. 13 illustrate an example of a closed spin-network
with its two possible orientations.

Fig. 13

It will also be convenient to use the representation of a spin-network as
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a drawing on a plane, in order to keep track of signs properly when defin-
ing the value. This may have the effect of making the definition seem less
‘combinatorial’ than it really is. Of course, the definition could be reformu-
lated without the use of such a drawing if desired. Consider, then, a closed
spin-network α depicted as a

Fig. 14

drawing on a plane. Now, imagine each n-unit to be replaced in the drawing
by n parallel strands. At each vertex, the strand ends must be connected
together in pairs, but no two strands associated with the same n-unit are
to be connected together. Let us call such a connection scheme a vertex
connection. One such vertex connection is illustrated in fig. 14, while fig. 15
shows a non-allowable connection,

Fig. 15

since two strands of the 7-unit are connected to one another. The sign of
a vertex connection is defined most simply as (−1)x where x is the number
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of intersection points between different strands at the vertex, as drawn on
the plane. (These intersection points must be counted correctly if more
than two strands cross at a point, or if two strands touch: and ignored if
a strand crosses itself. It is simplest on the other hand, just to avoid such
features by drawing the strands in general position and not allowing any
strand connection to cross itself.) The sign of a vertex connection, in fact,
does not depend on the details of how it is drawn, but only on the pairing
off of the strands. The allowable vertex connection depicted above has −1
as its sign, since there are thirteen crossing points.

When the vertex connections have been completed at every vertex of
a closed spin-network, then we shall have a number of closed loops, with
no open-ended strands remaining. Consider, now, every possible way of
allowably completing the vertex connection for the spin-network α. We form
the expression

value of α =

∑±(−2)c
∏
n!

where the summation extends over all possible completed allowable connec-
tion schemes, where the ‘±’ stands for the product of the signs of all the
vertex connections, where c is the number of closed loops resulting from the
vertex connections and where the product in the denominator ranges over
all the units of the spin-network, n being the spin-number of the unit. The
value of any closed spin-network always turns out to be an integer.

Fig. 16

→ value =
1

2! 1! 1!
{+(−2)− (−2)2 − (−2)2 + (−2)}

= −6.

Let us consider a simple example, given in fig. 16. Note that the ‘acci-
dental’ intersection, arising from the crossing of the two 1-units in the first
drawing of the spin-network, does not contribute to the sign of the terms in
the sum. Only the intersections at the vertex connections count.
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The definition of the value of a closed oriented spin-network that I have
just given is perhaps the simplest to state, but it is by no means the most
useful to use in actual calculations. When the spin-networks become even
slightly more complicated than the simple one evaluated above, the detailed
calculations can become very unwieldy. A more useful procedure is to em-
ploy certain reduction formulae which can be used to express complicated
networks in terms of simpler ones.† For this purpose, it will be necessary to
introduce a slight variation of the spin-network theme; I shall consider the
related concept of a strand-network.

Fig. 17

A strand-network is a series of connections relating objects (which I shall
still refer to as n-units) an example of which is depicted in fig. 17. The
units are ‘tied together’ at various places, as indicated by the thick bar.
Any spin-network can be translated into strand-network terms, by replacing
each vertex according to the scheme shown in fig. 18. I thus introduce three
more (‘virtual’) units at each vertex. A strand-network is closed if it has no
free ends. Any closed (oriented) strand-network will have a value which is
an integer (positive, negative or zero). This value will be chosen to agree
with that defined for a spin-network, in the case of closed strand-networks
obtained by means of the above replacement. Generally, to obtain the value
of s closed strand-network β we employ the same formula as before:

value of β =

∑±(−2)c
∏
n!

†Diagrams closely related to spin-networks were introduced by Ord-Smith and Edmonds
for the graphical treatment of quantum mechanical angular momentum. (See reference (l)
for a detailed discussion.)
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Fig. 18

where now the ‘±’ sign refers to the product of all the signs of all the permuta-
tions involved in each strand connection at which the strands come together.
For example, one possible connection scheme for

Fig. 19

‘strand vertex’ of fig. 19, would be that shown in fig. 20. This connection
scheme would contribute a minus sign, since an odd permutation is involved.
(There are nine crossing points—this is essentially

Fig. 20

the ‘Aitken diagram’ method of determining the sign of a permutation.)
Notice that for a connection scheme to be possible at all, we require that
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the total of the spin-numbers entering at one side must equal the total of the
spin-numbers leaving at the other. This one requirement now takes the place
of the ‘triangle inequality’ and ‘fermion conservation’ that we had earlier.

Fig. 21

·
· · value =

1

1! 1! 1! 1!
{+(−2)2 − (−2)− (−2) + (−2)}

= 2.

Let us evaluate the simple closed strand-network of fig. 21 as an example.
Again there is an ‘accidental’ intersection depicted (where two 1-units cross)
which does not contribute to the sign of the terms in the sum.

Let me list a number of relations and reduction formulae which are useful
in evaluating strand-networks (fig. 22). (I am not going to prove anything
here, but most of the relations are not hard to verify.) These relations may
be substituted into any closed strand-network and a valid relation between
values is obtained. Finally, let me make the remark that the value is multi-
plicative, that is to say, the value of the union of two disjoint strand-networks
or spin-networks is equal to the product of their individual values.

I now come to the definition of the norm of a spin-network. A strand-
network will likewise have a norm. This is simply obtained by drawing two
copies of the spin-network (or strand-network), joining together the corre-
sponding free end units to make a closed network, and then taking the mod-
ulus of the value of this resulting closed network. As an example, the norm
of the spin-network consisting of a single vertex is found in fig. 23. An even
simpler example, depicted in fig. 24, is the norm of a single isolated n-unit.

Finally, let me describe how the norm may be used in the calculation
of probabilities for spin-numbers, in the type of ‘experiment’ that we have
been considering. (Again I shall give no proofs.) Suppose we start with a
spin-network α, with an a-unit and a b-unit among its
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Fig. 22

22



Fig. 23

free ends (fig. 25). Suppose the a-unit and the b-unit come together to form an
x-unit, the resulting spin-network being denoted by β (see fig. 26). We wish
to know (given α) what are the various probabilities for the different possible
values of the spin-number x. Let γ denote the spin-network representing the
coming together of the a-unit and

Fig. 24

Fig. 25
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the b-unit to form the x-unit. Let ξ denote the spin-network consisting of the
x-unit alone. These are illustrated in fig. 27. Then the required probability
for the resulting spin-number to be x is

probability =
normβ normξ

normα normγ
.

Using the explicit expressions for norm γ and norm ξ that were just given as
examples (using a slightly different notation), we can rewrite this as

probability =
normβ (x + 1) { 1

2
(a+ b + x) + 1}!

normα {1
2
(a+ b− x)}! { 1

2
(b + x− a)}! { 1

2
(x+ a− b)}!

From the combinatorial nature of the definition of norm, it is clear that
these probabilities must all be rational numbers. And with the interpretation
of ‘angle’ that I have given, the three-dimensional Euclidean nature of the
‘directions in space’ that are obtained, is a consequence of these combinatorial
probabilities.

Fig. 26

24



Fig. 27

I should emphasize again that the space that I get out in the end is the
one defined by the system itself and is not really the same space as the one
that might have been introduced at the start if a conventional formalism
had been used. Thus, although undoubtedly the reason that we end up
with directions in a Euclidean three-dimensional space is intimately related
to the fact that we start with representations of the rotation group SO(3),
the precise logical connections are not at all clear to me. When I come to
consider the generalization of all this to a relativistic scheme in a moment,
this question will again present itself. I shall also need to consider the spatial
locations of objects, not just their orientations. My model works with objects
and the interrelations between objects. An object is thus ‘located’, either
directionally or positionally in terms of its relations with other objects. One
doesn’t really need a space to begin with. The notion of space comes out as
a convenience at the end.

Essentially, I have so far been using a non-relativistic scheme. The angular
momentum is not relativistic angular momentum. From a four-dimensional
viewpoint, the directions I get are those orthogonal to a given timelike di-
rection, i.e. directions in three-dimensional space. All the particles are going
along in this same timelike direction. Perhaps they can knock each other
a little bit, but they are not really moving very much. They just transfer
angular momentum backwards and forwards. All the particles are, strictly
speaking in the same place, not moving relative to one another. Conse-
quently, one does not have any problem of mixing between orbital and spin
angular momentum. Once I allow orbital contributions to come in, then I
must drastically change the scheme, since now not only is the question of
‘direction’ and ‘angle’ involved, but so also is ‘position’ and ‘distance’. Thus,
if one thinks of real particles moving relative to each other, then there is
the problem not only of doing things relativistically, but also of bringing in
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actual displacements between particles. Consider two particles in relative
motion. Suppose they come together and combine to form a system with
a well-defined total spin. Then to obtain the spin of the combined system,
we cannot just add up the individual spins because we have to bring in the
orbital component. There is a mixture of the actual displacements in space
with the angular momentum concept. So I spent a long time thinking how
one should combine rotations and displacements together into an appropri-
ate relativistic scheme. Eventually I was led to consider a certain algebra for
space-time which treats linear displacements on the same footing as it treats
rotations. Thus, linear momentum is treated on a similar footing to angular
momentum.

Now you might raise the objection that linear momentum has a continu-
ous spectrum, while it is only for angular momentum that one has discrete-
ness. This is a problem of some significance to us. My answer to it is roughly
the following: each particle has its own discrete spectrum for its angular mo-
mentum. When two particles are considered together as a unit, then again
there is a discrete spectrum for the combined system. The way these ‘spins’
add up implicitly brings in the relative motion between the two particles. So
the momentum is brought in through the back door, in a sense, for one could
be always talking in terms of ‘bound systems’.

I consider momentum states as being linear combinations of angular mo-
mentum states. There is indeed a problem to see how this continuous mo-
mentum should be built up from something discrete, but, in principle, there
is nothing against it. In effect, the idea is that the momentum should be
brought in indirectly. I would propose that, in a sense, there should not
be a well-defined distinction between momentum and angular momentum—
except in the limit. Individual particles and simple systems would not really
‘know’ what momentum is. Like the idea of ‘direction’ that I considered
earlier, it would be only in the limit of large systems that the concept of mo-
mentum really attains a well-defined meaning. Smaller systems might retain
a combined concept of momentum and angular momentum, but these things
would only sort themselves out properly in the limit.

The algebra I have used to treat linear displacements and rotations to-
gether, or linear and angular momentum together, I call the algebra of
twistors. I have used the term ‘twistor’ to denote a ‘spinor’ for the six-
dimensional (+ + − − −−) pseudo-orthogonal group O(2,4). The twistor
group is the (+ + −−) pseudo-unitary group SU(2,2), which is locally iso-
morphic with O(2,4). In turn, O(2,4) is locally isomorphic with the fifteen-
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parameter (local) conformal group of space-time. Under a conformal trans-
formation of space-time, the twistors will transform (linearly) according to a
representation of the group SU(2,2).

The basic twistor is a four-complex-dimensional object. We can thus
describe it by means of four complex components Zα:

(Zα) = (Z0, Z1, Z2, Z3) .

The complex conjugate of the twistor Zα is an object Z̄α whose components

(Z̄α) = (Z̄0, Z̄1, Z̄2, Z̄3)

are given (according to a convenient co-ordinate system) by

Z̄0 = (Z2), Z̄1 = (Z3), Z̄2 = (Z0), Z̄3 = (Z1).

This implies that the Hermitian form Zα Z̄α (summation convention as-
sumed) has signature (+ + −−), which is required in order to give SU(2,2).
(I have already described these objects(2) and their geometrical significance
in Minkowski space-time, and a later paper(3) goes into some further devel-
opments, including some of the quite surprising aspects of the theory which
arise when one starts to describe physical fields in twistor terms.)

When Zα Z̄α = 0 I call Zα a null twistor. A null twistor Zα has a very
direct geometrical interpretation in space-time terms. In fact, Zα defines a
null straight line, which we can think of as the world line of a zero rest-mass
particle. (An important aspect of twistor theory is that zero rest-mass is to
be regarded as more fundamental than a finite rest-mass. Finite mass par-
ticles are viewed as composite systems, the mass arising from interactions.)
The twistor λZα, for any non-zero complex number λ, defines the same null
line as does Zα. But we can distinguish Zα from λZα by assigning to the
particle a 4-momentum (in its direction of motion) and, in addition, a sort
of ‘polarization’ direction (both constant along the world line of the parti-
cle). When Zα is replaced by rZα (r real) the momentum is multiplied by
r2. When Zα is replaced by eiθZα (θ real) the ‘polarization’ plane is rotated
through an angle 2θ. If Y α is another null twistor, the condition for the null
lines represented by Y α and Zα to meet is

Y α Z̄α = 0,

i.e. this is the condition for the two particles to ‘collide’. (To be strictly
accurate we have to include the possibility that they may ‘meet at infinity’.
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In addition, some of the null twistors describe ‘null lines at infinity’ rather
than actual null lines.)

The non-null twistors are divided into two classes according as Zα Z̄α,
is positive or negative. If Zα Z̄α > 0, I call Zα right-handed; if Zα Z̄α < 0,
left-handed. In Minkowski space-time, one can give an interpretation of a
non-null twistor in terms of a twisting system of null lines. The helicity of the
twist is defined by the sign of Zα Z̄α. In more physical terms, the twistor Zα

(up the phase) describes the momentum and angular momentum structure
of a zero rest-mass particle.‡ We can make the interpretation that Zα Z̄α,
is (twice) the intrinsic spin of the particle, measured in suitable units, with
a sign defining the helicity. If Zα Z̄α 6= 0, then it is not possible actually
to localize the particle as a null straight line. Only if Zα Z̄α = 0 do we
get a uniquely defined null line which we can think of as the world line of
the particle; otherwise the particle to some extent spreads itself throughout
space.

The twistor co-ordinates Z0, Z1, Z2, Z3, together with their complex
conjugates Z̄0, Z̄1, Z̄2, Z̄3, can be used in place of the usual x, y, z, t and
their canonical conjugates px, py, pz, E. In fact, anything that can be writ-
ten in normal Minkowski space terms can be rewritten in terms of twistors.
However, in principle, the twistor expressions for even quite simple physical
processes may turn out to be very complicated. But in fact it emerges that
the basic elementary processes that one requires, can actually be expressed
very simply if one goes about it in the right way. Analytic (holomorphic)
functions in the Zα variables play a key role. So does contour integration.

We can regard the Zα as quantum operators under suitable circumstances.
Then Z̄α, can be regarded as the canonical conjugate of Zα. (I shall go into
the reasons for this a little more later.) We have commutation rules

Zα Z̄β − Z̄β Zα = δαβ h̄

‡Using a convenient co-ordinate system, we can relate the momentum Pα and the
angular momentum Mab(= −M ba) to the twistor variables Zα, Z̄α a by:

P0 + P1 = 2
1
2 Z0 Z̄2, P0 − P1 = 2

1
2 Z0 Z̄3, P2 + i P3 = 2

1
2 Z1 Z̄2

P2 − i P3 = 2
1
2 Z0 Z̄3, M23 + iM01 = Z1 Z̄1 − Z0 Z̄0, M23 − iM01 = Z3 Z̄3 − Z2 Z̄2

M13 +M03 + iM02 + iM12 = 2Z2 Z̄2, M13 −M03 + iM02 − iM12 = 2Z3 Z̄2

M13 +M03 − iM02 − iM12 = 2Z1 Z̄0, M13 −M03 − iM02 + iM12 = 2Z0 Z̄1

28



Then, since Zα and Z̄α do not commute, we must re-interpret the expression
for the spin-helicity 1

2
n as the symmetrized quantity,

1

4
(Zα Z̄α − Z̄α Zα) =

1

2
nh̄

Only zero rest-mass states can be eigenstates of this operator. The eigenval-
ues of n are . . . − 2,−1, 0, 1, 2, . . . The operators for the ten components of
momentum and angular momentum (together with those for the five extra
components arising from the conformal invariance of zero rest-mass fields)
are

Zα Z̄β −
1

4
δαβ Z

γ Z̄γ

in twistor notation. The usual commutation rules for momentum and angular
momentum are then a consequence of the twistor commutation rules.

One idea would now be to use this fact and simply let the twistors take
the place of the two-component spinors that lay ‘behind the scenes’ in my
previous non-relativistic approach, and then to attempt to build a concept of
a four-dimensional space-time from whatever graphical algebra arises from
the twistor rules. I have not attempted to do quite this, as yet, since I am not
sure that it is exactly the right thing to do. There are certain other aspects
of twistor theory which should really be taken into account first.

Let me mention one particular point. It is a rather remarkable one.
If the twistor approach is going to have any fundamental significance in
physical theory, then it ought, in principle at least, to be possible to carry
the formalism over and apply it to a curved space-time, rather then just a flat
space-time. These objects, as originally defined, are very much tied up with
the Minkowski flat space-time concept. How can we carry them over into a
curved space-time? Actually, a twistor for which Zα Z̄α = 0 carries over very
well. Its interpretation is now simply as a null geodesic (i.e. world line of a
freely moving massless particle) with a momentum (pointing along the world
line) and a ‘polarization’ direction (both covariantly constant along the world
line). On the other hand, it does not seem to be possible to interpret a non-
null twistor, in a general curved space-time, in precise classical space-time
terms. Nevertheless it turns out to be convenient to postulate the existence
of these non-null twistors—as objects with no classical realization in curved
space-time terms. (In a sense, twistors are more appropriate to the treatment
of quantized gravitation§ than of classical general relativity.)

§Since this lecture was delivered, there have been some developments in twistor theory
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Let us concentrate attention, for the moment, on the null twistors only
so that we can consider purely geometrical questions. We are interested in
properties of null geodesics which refer to each geodesic as a whole and not
to the neighbourhood of some point on a geodesic. Consider, for example,
the condition of orthogonality between twistors. We have seen that in flat
space-time, the condition of orthogonality Y αZ̄α = 0 between two twistors
Y α, Zα corresponds to the meeting of the corresponding null lines. In curved
space-time this is not really satisfactory, because although I can tell whether
two null geodesics are going to meet if I look in the neighbourhood of the in-
tersection point, if I look somewhere else, I can’t see whether or not they will
meet, because the curvature may have bent them away from each other. So,
in fact, the orthogonality property is not something which is preserved, as an
invariant concept, when one turns to curved space-time. On the other hand,
certain things are preserved; and, somewhat surprisingly, they correspond to
assigning a symplectic structure to the twistor space.

This symplectic structure is expressed (in appropriate co-ordinates) as
the invariance of the 2-form

dZα ∧ dZ̄α

(using Cartan notation). Strictly speaking, this requires the postulated non-
null twistors, in addition to the null ones. The null twistors only form
a seven-real-dimensional manifold, whereas a symplectic manifold must be
even-dimensional. The null twistor manifold must be embedded in the eight-
real-dimensional manifold consisting of all twistors. The structure of the null
twistor manifold is that induced by the embedding in this eight-dimensional
symplectic manifold. In addition to the symplectic structure (and closely
related to it), the expressions

ZαZ̄α, ZαdZ̄α, Zα ∂

∂Zα

of relevance to this discussion. It seems to be possible to express quantized gravitational
theory in twistor form. By means of 3k-dimensional contour integrals in spaces of many
twistor variables, one can apparently calculate scattering amplitudes for processes involv-
ing gravitons, photons and other particles. Diagrams arise which can be used to replace the
spin-networks of the formalism described here. It is not impossible that the calculations
can be reduced to a set of comparatively simple combinatorial rules, but it is unclear, as
yet, whether this is so. The work is still very much at a preliminary stage of development
and many queries remain unanswered.
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are also invariant. All these invariant quantities can be interpreted, to some
extent, in terms of the geometrical properties of null geodesics. But it will
not be worthwhile for me to go into all this here.

The invariance of the symplectic structure of the twistor space for curved
space-time can be re-expressed as the invariance of the Poisson brackets

[ψ, χ] = i
∂ψ

∂Zα

∂χ

∂Z̄α
− i ∂χ

∂Zα

∂ψ

∂Z̄α
.

This strongly suggests that in the passage to quantum theory, Z̄α should be
regarded as the conjugate variable to Zα. Thus, we are led to the commuta-
tion rules I mentioned earlier, relating quantum operators Zα and Z̄α. These
commutation rules in turn give us the commutation relations for momen-
tum and angular momentum, as I indicated before. This suggests that there
may possibly be some deep connection between these commutation rules (or
perhaps some slight modifications of them) and the curvature of space-time.

The picture that one gets is that in some sense the curvature of space-time
is to do with canonical transformations between the twistor variables Zα, Z̄α.
Suppose we start in some region of space-time where things are essentially
flat. Then we can interpret Zα and Z̄α in a straightforward way in terms
of geometry and angular momentum, etc. Suppose we then pass through a
region of curvature to another region where things are again essentially flat.
We then find that our interpretations have undergone a ‘shift’ corresponding
to a canonical transformation between Zα and Z̄α. In effect the ‘twistor
position’ (i.e. Zα) and ‘twistor momentum’ (i.e. Z̄α) have got mixed up.
Somehow it is this mixing up of the ‘twistor position’ and ‘twistor momentum’
which corresponds to what we see as space-time curvature.

Going back to my original combinatorial approach for building space up
from angular momentum, we can ask now whether such a combinatorial
scheme could be applied to the twistors. Might it be that, instead of ending
up with a flat space, we could end up with a curved space-time? Even if I
start with the commutation rules appropriate just to the Poincaré group, or
perhaps the conformal group, it is obvious that I must end up with essentially
the same space that I ‘start’ with? One has to define the things with which
one builds up geometry (e.g. points, angle, etc.), in terms of the physical
objects under consideration. It is not at all clear to me that the geometry
that is built up in one region will not be ‘shifted’ with respect to the geometry
built up in some other region. Is it then not possible that a space-time
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possessing curvature might be the result? That is really the final point I
wanted to make.
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