
OPEN PETRI NETS

John C. Baez

Department of Mathematics
University of California

Riverside CA, USA 92521
and

Centre for Quantum Technologies
National University of Singapore

Singapore 117543

Jade Master

Department of Mathematics
University of California

Riverside CA, USA 92521

email: baez@math.ucr.edu, jmast003@ucr.edu

July 24, 2022

Abstract. The reachability semantics for Petri nets can be studied using open Petri nets. For

us an ‘open’ Petri net is one with certain places designated as inputs and outputs via a cospan

of sets. We can compose open Petri nets by gluing the outputs of one to the inputs of another.
Open Petri nets can be treated as morphisms of a category Open(Petri), which becomes symmetric

monoidal under disjoint union. However, since the composite of open Petri nets is defined only up

to isomorphism, it is better to treat them as morphisms of a symmetric monoidal double category
Open(Petri). We describe two forms of semantics for open Petri nets using symmetric monoidal

double functors out of Open(Petri). The first, an operational semantics, gives for each open Petri

net a category whose morphisms are the processes that this net can carry out. This is done in a
compositional way, so that these categories can be computed on smaller subnets and then glued

together. The second, a reachability semantics, simply says which markings of the outputs can
be reached from a given marking of the inputs.

1. Introduction

Petri nets are a simple and widely studied model of computation [19, 21, 34], with generalizations
applicable to many forms of modeling [24]. Recently more attention has been paid to a compositional
treatment in which Petri nets can be assembled from smaller ‘open’ Petri nets [3, 4, 5, 6, 7, 8]. In
particular, the reachability problem for Petri nets, which asks whether one marking of a Petri
net can be obtained from another via a sequence of transitions, can be studied compositionally
[35, 39, 41]. Here we seek to give this line of work a firmer footing in category theory. Petri nets
are closely tied to symmetric monoidal categories in two ways. First, a Petri net P can be seen
as a presentation of a free symmetric monoidal category FP , with the places and transitions of P
serving to freely generate the objects and morphisms of FP . We show how to construct this in

1

2 OPEN PETRI NETS

Section 2, after reviewing a line of previous work going back to Meseguer and Montanari [32]. In
these terms, the reachability problem asks whether there is a morphism from one object of FP to
another.

Second, there is a symmetric monoidal category where the objects are sets and the morphisms
are equivalence classes of open Petri nets. We construct this in Section 3, but the basic idea is very
simple. Here is an open Petri net P from a set X to a set Y :

A

B

C

D

α

X

1

2

3

Y

4

5

The yellow circles are places and the blue rectangle is a transition. The bold arrows from places
to transitions and from transitions to places complete the structure of a Petri net. There are also
arbitrary functions from X and Y into the set of places. These indicate points at which tokens
could flow in or out, making our Petri net ‘open’. We write this open Petri net as P : X 9 Y for
short.

Given another open Petri net Q : Y 9 Z:

β

γ

E F

Y

4

5

Z

6

the first step in composing P and Q is to put the pictures together:

A

B

C

D

α

β

γ

E F

X

1

2

3

Y

4

5

Z

6

At this point, if we ignore the sets X,Y, Z, we have a new Petri net whose set of places is the
disjoint union of those for P and Q. The second step is to identify a place of P with a place of Q
whenever both are images of the same point in Y . We can then stop drawing everything involving
Y , and get an open Petri net Q� P : X 9 Z:

A

B

α C F

β

γ

X

1

2

3

Z

6

OPEN PETRI NETS 3

Formalizing this simple construction leads us into a bit of higher category theory. The process
of taking the disjoint union of two sets of places and then quotienting by an equivalence relation
is a pushout. Pushouts are defined only up to canonical isomorphism: for example, the place
labeled C in the last diagram above could equally well have been labeled D or E. This is why
to get a category, with composition strictly associative, we need to use isomorphism classes of
open Petri nets as morphisms. But there are advantages to working with open Petri nets rather
than isomorphism classes. For example, we cannot point to a specific place or transition in an
isomorphism class of Petri nets. If we work with actual open Petri nets, we obtain not a category
but a bicategory [39].

However, this bicategory is equipped with more structure. Besides composing open Petri nets,
we can also ‘tensor’ them via disjoint union: this describes Petri nets being run in parallel rather
than in series. The result is a symmetric monoidal bicategory. Unfortunately, the axioms for a
symmetric monoidal bicategory are cumbersome to check directly [42]. Double categories turn out
to be much more convenient. Double categories were introduced in the 1960s by Ehresmann [16, 17].
More recently they have been used to study open dynamical systems [25, 26, 33], open electrical
circuits and chemical reaction networks [12], open discrete-time Markov chains [11], coarse-graining
for open continuous-time Markov chains [1], and ‘tile logic’ for concurrency in computer science [9].

A 2-morphism in a double category can be drawn as a square:

X1 Y1

X2 Y2.

⇓ α

M

gf

N

We call X1, X2, Y1 and Y2 ‘objects’, f and g ‘vertical 1-morphisms’, M and N ‘horizontal 1-cells’,
and α a ‘2-morphism’. We can compose vertical 1-morphisms to get new vertical 1-morphisms and
compose horizontal 1-cells to get new horizontal 1-cells. We can compose the 2-morphisms in two
ways: horizontally and vertically. This is just a quick sketch of the ideas; for full definitions see
Appendix A.

In Thm. 13 we construct a symmetric monoidal double category Open(Petri) with:

• sets X,Y, Z, . . . as objects,
• functions f : X → Y as vertical 1-morphisms,
• open Petri nets P : X 9 Y as horizontal 1-cells,
• morphisms between open Petri nets as 2-morphisms.

To get a feeling for morphisms between open Petri nets, some examples may be helpful. There is a
morphism from this open Petri net:

α

α′

A

A′
B

X1

1

1′

Y1

2

4 OPEN PETRI NETS

to this one:

αA B

X2

1

Y2

2

mapping both primed and unprimed symbols to unprimed ones. This describes a process of ‘simpli-
fying’ an open Petri net. There are also morphisms that include simple open Petri nets into more
complicated ones. For example, the above morphism of open Petri nets has a right inverse.

The main goal of this paper is to describe two forms of semantics for open Petri nets. The first is
an ‘operational’ semantics. In Thm. 17 we show this semantics gives a map from Open(Petri) to a
double category Open(CMC). This map sends any Petri net P to the symmetric monoidal category
FP , but it also acts on open Petri nets in a compositional way. The second is a ‘reachability’
semantics. This gives a map from Open(Petri) to the double category of relations, Rel, which has:

• sets X,Y, Z, . . . as objects,
• functions f : X → Y as vertical 1-morphisms,
• relations R ⊆ X × Y as horizontal 1-cells,
• squares

X1 Y1

X2 Y2

R ⊆ X1 × Y1

gf

S ⊆ X2 × Y2

obeying (f × g)R ⊆ S as 2-morphisms.

In Petri net theory, a ‘marking’ of a set X is a finite multisubset of X: we can think of this as a
way of placing finitely many tokens on the points of X. Let N[X] denote the set of markings of X.
Given an open Petri net P : X 9 Y , there is a ‘reachability relation’ saying when a given marking
of X can be carried by a sequence of transitions in P to a given marking of Y , leaving no tokens
behind. We write the reachability relation of P as

�P ⊆ N[X]× N[Y].

In Thm. 23 we show that the map sending P to �P extends to a lax double functor

� : Open(Petri)→ Rel.

In Thm. 24 we go further and show that this double functor is symmetric monoidal.
If the reader prefers bicategories to double categories, they may be relieved to learn that any

double category D gives rise to a bicategory H(D) whose 2-morphisms are those 2-morphisms of D
of the form

X Y

X Y.

⇓ α

M

1X 1Y

N

OPEN PETRI NETS 5

Shulman has described conditions under which symmetric monoidal double categories give rise to
symmetric monoidal bicategories [40], and using his work one can show that the operational and
reachability semantics for open Petri nets give maps between symmetric monoidal bicategories [2].
However, only the double category framework presents the operational and reachability semantics
in their full glory. Namely: using double categories, we can describe how these semantics behave on
composite open Petri nets, tensor products of open Petri nets, and also morphisms between open
Petri nets.

2. From Petri Nets to Commutative Monoidal Categories

In this section we treat Petri nets as presentations of symmetric monoidal categories. As we shall
explain, this has already been done by various authors. Unfortunately there are different notions
of symmetric monoidal category, and also different notions of morphism between Petri nets, which
combine to yield a confusing variety of possible approaches.

Here we take the maximally strict approach, and work with ‘commutative’ monoidal categories.
This means we are treating tokens in Petri nets as indistinguishable rather than merely swappable—
an approach known as the ‘collective token philosophy’ [20]. A commutative monoidal category is
a commutative monoid object in Cat, so its associator:

αa,b,c : (a⊗ b)⊗ c ∼−→ a⊗ (b⊗ c),
its left and right unitor:

λa : I ⊗ a ∼−→ a, ρa : a⊗ I ∼−→ a,

and even—disturbingly—its symmetry:

σa,b : a⊗ b ∼−→ b⊗ a
are all identity morphisms. The last would ordinarily be seen as ‘going too far’, since while every
symmetric monoidal category is equivalent to one with trivial associator and unitors, this ceases
to be true if we also require the symmetry to be trivial. However, it seems that Petri nets most
naturally serve to present symmetric monoidal categories of this very strict sort. Thus, we construct
a functor from the category of Petri nets to the category of commutative monoidal categories, which
we call CMC:

F : Petri→ CMC.

This functor sends any Petri net P to the free commutative monoidal category on P , and indeed it
is a left adjoint.

It seems Montanari and Meseguer were the first to treat Petri nets as presentations of commuta-
tive monoidal categories [32]. They constructed a closely related but different left adjoint functor
from a category of Petri nets to a category of ‘Petri categories’, which they call CatPetri. Our
category Petri is a subcategory of their category of Petri nets: our morphisms of Petri nets send
places to places, while they allow more general maps that send a place to a formal linear combi-
nation of places. On the other hand, their CatPetri is the full subcategory of CMC containing only
commutative monoidal categories whose objects form a free commutative monoid.

In short, the situation is surprisingly subtle given the elementary nature of the concepts involved.
The paper by Montanari and Meseguer actually discusses over half a dozen categories of Petri nets
and commutative monoidal categories. Further work by Degano, Meseguer, Montanari [15] and
Sassone [36, 37, 38] explores other variations on the theme of generating symmetric monoidal
categories from Petri nets. Resisting the temptation to dwell on the subtleties of this topic, we
present our approach with no further ado.

6 OPEN PETRI NETS

Definition 1. Let CommMon be the category of commutative monoids and monoid homomor-
phisms.

Definition 2. Let J : Set → CommMon be the free commutative monoid functor, that is, the left
adjoint of the functor K : CommMon → Set that sends commutative monoids to their underlying
sets and monoid homomorphisms to their underlying functions. Let

N : Set→ Set

be the free commutative monoid monad given by the composite KJ .

For any set X, N[X] is the set of formal finite linear combinations of elements of X with natural
number coefficients. The set X naturally includes in N[X], and for any function f : X → Y ,
N[f] : N[X]→ N[Y] is given by the unique monoid homomorphism that extends f .

Definition 3. We define a Petri net to be a pair of functions of the following form:

T
t
//

s // N[S].

We call T the set of transitions, S the set of places, s the source function and t the target
function.

Definition 4. A Petri net morphism from the Petri net s, t : T → N[S] to the Petri net s′, t′ : T →
N[S′] is a pair of functions (f : T → T ′, g : S → S′) such that the following diagrams commute:

T

f

��

s // N[S]

N[g]
��

T ′
s′ // N[S′]

T

f

��

t // N[S]

N[g]
��

T ′
t′ // N[S′].

Definition 5. Let Petri be the category of Petri nets and Petri net morphisms, with composition
defined by

(f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′).

As mentioned above, Meseguer and Montanari [32] use a more general definition of Petri net
morphism: they allow an arbitrary commutative monoid homomorphism from N[S] to N[S′], not
necessarily of the form N[g] for some function g : S → S′. Sassone [36, 37, 38] and Degano–
Meseguer–Montanari [15] also use this more general definition, but Baldan–Corradini–Ehrig–Heckel
[4] and Baldan–Bonchi–Gadducci–Monreale [5] use the definition we are using here.

Definition 6. A commutative monoidal category is a commutative monoid object internal to
Cat. Explicitly, a commutative monoidal category is a strict monoidal category (C,⊗, I) such that
for all objects a and b and morphisms f and g in C

a⊗ b = b⊗ a and f ⊗ g = g ⊗ f.

Note that a commutative monoidal category is the same as a strict symmetric monoidal category
where the symmetry isomorphisms σa,b : a ⊗ b ∼−→ b ⊗ a are all identity morphisms. Every strict
monoidal functor between commutative monoidal categories is automatically a strict symmetric
monoidal functor. This motivates the following definition:

Definition 7. Let CMC be the category whose objects are commutative monoidal categories and
whose morphisms are strict monoidal functors.

OPEN PETRI NETS 7

We can turn a Petri net P = (s, t : T → N[S]) into a commutative monoidal category FP as
follows. We take the commutative monoid of objects Ob(FP) to be the free commutative monoid
on S. We construct the commutative monoid of morphisms Mor(FP) as follows. First we generate
morphisms recursively:

• for every transition τ ∈ T we include a morphism τ : s(τ)→ t(τ);
• for any object a we include a morphism 1a : a→ a;
• for any morphisms f : a→ b and g : a′ → b′ we include a morphism denoted f +g : a+a′ →
b+ b′ to serve as their tensor product;

• for any morphisms f : a→ b and g : b→ c we include a morphism g ◦ f : a→ c to serve as
their composite.

Then we mod out by an equivalence relation on morphisms that imposes the laws of a commutative
monoidal category, obtaining the commutative monoid Mor(FP).

Definition 8. Let F : Petri→ CMC be the functor that makes the following assignments on Petri
nets and morphisms:

T

f

��

t
//

s // N[S]

N[g] 7→
��

FP

F (f,g)

��

T ′
t′
//

s′ // N[S′] FP ′.

Here F (f, g) : FP → FP ′ is defined on objects by N[g]. On morphisms, F (f, g) is the unique map
extending f that preserves identities, composition, and the tensor product.

Lemma 9. The functor

F : Petri→ CMC

is a left adjoint.

Proof. This is a special case of [30, Thm. 5.1] which shows that there is similar adjunction for
any Lawvere theory Q. When Q is set equal to the Lawvere theory for commutative monoids this
theorem gives the desired adjunction. �

3. Open Petri Nets

Our goal in this paper is to use the language of double categories to develop a theory of Petri
nets with inputs and outputs that can be glued together. The first step is to construct a double
category Open(Petri) whose horizontal 1-morphisms are open Petri nets. For this we need a functor
L : Set→ Petri that maps any set S to a Petri net with S as its set of places, and we need L to be
a left adjoint.

Definition 10. Let L : Set→ Petri be the functor defined on sets and functions as follows:

X

f 7→
��

∅

��

//
// N[X]

N[f]
��

Y ∅ //
// N[Y]

where the unlabeled maps are the unique maps of that type.

8 OPEN PETRI NETS

Lemma 11. The functor L has a right adjoint R : Petri → Set that acts as follows on Petri nets
and Petri net morphisms:

T

f

��

t
//

s // N[S]

N[g] 7→
��

S

g

��

T ′
t′
//

s′ // N[S] S′.

Proof. For any set X and Petri net P = (s, t : T → N[S]) we have natural isomorphisms

homPetri

(
L(X), T

t
//

s // N[S]
) ∼= homPetri

(
∅ //

// N[X] , T
t
//

s // N[S]
)

∼= homSet(X,S)

∼= homSet

(
X,R(T

t
//

s // N[S])
)
. �

An ‘open’ Petri net is a Petri net P equipped with maps from two sets X and Y into its set of
places, RP . We can write this as a cospan in Set of the form

RP

X

==

Y.

aa

Using the left adjoint L we can reexpress this as a cospan in Petri, and this gives our official
definition:

Definition 12. An open Petri net is a diagram in Petri of the form

P

LX

i

==

LY

o

aa

for some sets X and Y . We sometimes write this as P : X 9 Y for short.

We now introduce the main object of study: the double category Open(Petri), which has open
Petri nets as its horizontal 1-cells. Since this is a symmetric monoidal double category, it involves
quite a lot of structure. The definition of symmetric monoidal double category can be found in
Appendix A.

Theorem 13. There is a symmetric monoidal double category Open(Petri) for which:

• objects are sets
• vertical 1-morphisms are functions
• horizontal 1-cells from a set X to a set Y are open Petri nets

P

LX

i

==

LY

o

aa

OPEN PETRI NETS 9

• 2-morphisms α : P ⇒ P ′ are commutative diagrams

LX
i //

Lf

��

P

α

��

LY
ooo

Lg

��

LX ′
i′ // P ′ LY ′.

o′oo

in Petri.

Composition of vertical 1-morphisms is the usual composition of functions. Composition of hori-
zontal 1-cells is composition of cospans via pushout: given two horizontal 1-cells

P Q

LX

i1

==

LY

o1

``

LY

i2

>>

LZ

o2

``

their composite is given by this cospan from LX to LZ:

P +LY Q

P

jP
::

Q

jQ
dd

LX

i1

<<

LY

o1

dd

i2

::

LZ

o2

bb

where the diamond is a pushout square. The horizontal composite of 2-morphisms

LX
i1 //

Lf

��

P

α

��

LY
o1oo

Lg

��

LX ′
i′1 // P ′ LY ′

o′1oo

LY
i2 //

Lg

��

Q

β

��

LZ
o2oo

Lh

��

LY ′
i′2 // Q′ LZ ′

o′2oo

is given by

LX
jP i1 //

Lf

��

P +LY Q

α+
Lg
β

��

LZ
jQo1

oo

Lh

��

LX ′
jP ′ i

′
1 // P ′ +LY ′ Q

′ LZ ′.
jQ′o

′
2

oo

Vertical composition of 2-morphisms is done using composition of functions. The symmetric monoidal
structure comes from coproducts in Set and Petri.

Proof. We construct this symmetric monoidal double category using the machinery of ‘structured
cospans’ [2]. The main tool is the following lemma, which explains the symmetric monoidal structure
in more detail:

Lemma 14. Let A be a category with finite coproducts and X be a category with finite colimits.
Given a left adjoint L : A→ X, there exists a unique symmetric monoidal double category LCsp(X),
such that:

• objects are objects of A,

10 OPEN PETRI NETS

• vertical 1-morphisms are morphisms of A,
• a horizontal 1-cell from a ∈ A to b ∈ A is a cospan in X of this form:

La x Lb

• a 2-morphism is a commutative diagram in X of this form:

La Lbx

Lc Ld.y

Lf Lgh

Composition of vertical 1-morphisms is composition in A. Composition of horizontal 1-cells is
composition of cospans in X via pushout: given horizontal 1-cells

x y

La

i1

>>

Lb

o1

``

Lb

i2

>>

Lc

o2

``

their composite is this cospan from La to Lc:

x+Lb y

x

jx
;;

y

jy
cc

La

i1

<<

Lb

o1

cc

i2

;;

Lc

o2

aa

where the diamond is a pushout square. The horizontal composite of 2-morphisms

La
i1 //

Lf

��

x

α

��

Lb
o1oo

Lg

��

La′
i′1 // x′ Lb′

o′1oo

Lb
i2 //

Lg

��

y

β

��

Lc
o2oo

Lh

��

Lb′
i′2 // y′ Lc′

o′2oo

is given by

La
jxi1 //

Lf

��

x+Lb y

α+
Lg
β

��

Lc
jyo2

oo

Lh

��

La′
jx′ i
′
1 // x′ +Lb′ y

′ Lc′.
jy′o

′
2

oo

The vertical composite of 2-morphisms

La
i1 //

Lf

��

x

α

��

Lb
o1oo

Lg

��

La′
i′1 // x′ Lb′

o′1oo

OPEN PETRI NETS 11

La′
i′1 //

Lf ′

��

x′

α′

��

Lb′
o′1oo

Lg′

��

La′′
i′′1 // x′′ Lb′′

o′′1oo

is given by

La
i1 //

L(f ′f)
��

x

α′α
��

Lb
o1oo

L(g′g)
��

La′′
i′′1 // x′′ Lb′′.

o′′1oo

The tensor product is defined using chosen coproducts in A and X. Thus, the tensor product of two
objects a1 and a2 is a1 + a2, the tensor product of two vertical 1-morphisms

a1

f1
��

b1

a2

f2
��

b2

is

a1 + a2

f1+f2

��

b1 + b2,

the tensor product of two horizontal 1-cells

La1
i1 // x1 Lb1

o1oo La2
i2 // x2 Lb2

o2oo

is

L(a1 + a2)
i1+i2 // x1 + x2 L(b1 + b2),

o1+o2oo

and the tensor product of two 2-morphisms

La1
i1 //

Lf1

��

x1

α1

��

Lb1
o1oo

Lg1

��

La′1
i′1 // x′1 Lb′1

o′1oo

La2
i2 //

Lf2

��

x2

α2

��

Lb2
o2oo

Lg2

��

La′2
i′2 // x′2 Lb′2

o′2oo

is

L(a1 + a2)
i1+i2 //

L(f1+f2)

��

x1 + x2

α1+α2

��

L(b1 + b2)
o1+o2oo

L(g1+g2)

��

L(a′1 + a′2)
i′1+i

′
2 // x′1 + x′2 L(b′1 + b′2).

o′1+o
′
2oo

The units for these tensor products are taken to be initial objects, and the symmetry is defined using
the canonical isomorphisms a+ b ∼= b+ a.

12 OPEN PETRI NETS

Proof. This is [2, Thm. 3.9]. Note that we are abusing language slightly above. We must choose a
specific coproduct for each pair of objects in X and A to give LCsp(X) its tensor product. Given
morphisms i1 : La1 → x1 and i2 : La2 → x2, their coproduct is really a morphism i1 + i2 : La1 +
La2 → x1+x2 between these chosen coproducts. But since L preserves coproducts, we can compose
this morphism with the canonical isomorphism L(a1 + a2) ∼= La1 + La2 to obtain the morphism
that we call i1 + i2 : L(a1 + a2)→ x1 + x2 above. �

To apply this lemma to the situation at hand we need the following result.

Lemma 15. Petri has small colimits.

Proof. Note that Petri is equivalent to the comma category f/g where f : Set→ Set is the identity
and g : Set→ Set is the functor N[−]2. Whenever categories A and B have small colimits, f : A→ C
is a functor preserving such colimits, and g : B→ C is any functor, then f/g has small colimits [10,
Thm. 3, Sec. 5.2]. Thus, Petri has small colimits.

For completeness, we recall how these colimits are constructed. The notation is simpler in the
general case. A diagram D : J → f/g consists of diagrams DA : J → A and DB : J → B together
with a natural transformation

γ : f ◦DA → g ◦DB .

To construct the colimit of D, we use the canonical morphisms

α : colim f ◦DA → f(colimDA),

β : colim g ◦DB → g(colimDB)

defined using the universal property of the colimits at left. Since f preserves colimits, α is an iso-
morphism. We also use the fact that colimits are functorial, so that γ gives a natural transformation
that we may call

colim γ : colim f ◦DA → colim g ◦DB .

The desired colimiting object colimD in f/g consists of the objects colimDA ∈ A, colimDB ∈ B
and the morphism

f(colimDA)
α−1

−−→ colim f ◦DA
colim γ−−−−→ colim g ◦DB

β−→ g(colimDB).

In particular, a diagram of Petri nets D : J → Petri gives rise to functors DA, DB : J → Set, a
Petri net

DA(j)
tj
//

sj
// N[DB(j)]

for each object j of J, and a morphism between these Petri nets for each morphism of J. The colimit
of D takes the form

colimDA
t
//

s // N[colimDB].

where s and t are constructed using the general prescription just described. �

We now have all of the ingredients to apply Lemma 14 to the functor L : Set → Petri. Thm.
13 follows from realizing that Open(Petri) as described in the theorem is the symmetric monoidal
double category LCsp(Petri). �

OPEN PETRI NETS 13

4. The Operational Semantics

In Section 2 we saw how a Petri net P gives a commutative monoidal category FP , and in
Section 3 we constructed a double category Open(Petri) of open Petri nets. Now we construct a
double category Open(CMC) of ‘open commutative monoidal categories’ and a map

Csp(F) : Open(Petri)→ Open(CMC).

This can be seen as providing an operational semantics for open Petri nets in which any open Petri
net is mapped to the commutative monoidal category it presents. The reachability semantics for
open Petri nets is based on this more fundamental form of semantics.

The key is this commutative diagram of left adjoint functors:

Set
L //

L′ ##

Petri

F
��

CMC

where L′ = FL sends any set to the free commutative monoidal category on this set: L′X has
N[X] as its set of objects, and only identity morphisms. Using Lemma 14, we can produce two
symmetric monoidal double categories from this diagram. We have already seen one: Open(Petri) =

LCsp(Petri). We now introduce the other: Open(CMC) = L′Csp(CMC).

Theorem 16. There is a symmetric monoidal double category Open(CMC) for which:

• objects are sets
• vertical 1-morphisms are functions
• horizontal 1-cells from a set X to a set Y are open commutative monoidal categories
C : X 9 Y , that is, cospans in CMC of the form

C

L′X

i

==

L′Y

o

aa

where C is a commutative monoidal category and i, o are strict monoidal functors,
• 2-morphisms α : C ⇒ C ′ are commutative diagrams in CMC of the form

L′X
i //

L′f
��

C

α

��

L′Y
ooo

L′g
��

L′X ′
i // C ′ L′Y ′.

o′oo

and the rest of the structure is given as in Lemma 14.

Proof. To apply Lemma 14 to the functor L′ : Set → CMC we just need to check that CMC has
finite colimits. First note that

CMC ' Mod(CMON,Cat)

where Mod(CMON,Cat) is the category of finite product preserving functors from the Lawvere
theory for commutative monoids to Cat. The cocompleteness of this category then follows from
various classical results, some listed in the introduction of a paper by Freyd and Kelly [18]. More
recently, Trimble [43, Prop. 3.1] showed that for any Lawvere theory Q and any cocomplete cartesian

14 OPEN PETRI NETS

category X with finite products distributing over colimits, the category of finite-product-preserving
functors Mod(Q,X) is cocomplete. �

The functor F : Petri → CMC induces a map sending open Petri nets to open commutative
monoidal categories. This map is actually part of a ‘symmetric monoidal double functor’, a concept
recalled in Appendix A.

Theorem 17. There is a symmetric monoidal double functor

Open(F) : Open(Petri)→ Open(CMC)

that is the identity on objects and vertical 1-morphisms, and makes the following assignments on
horizontal 1-cells and 2-morphisms:

LX
i //

Lf

��

P

α

��

LY
ooo

Lg 7→
��

L′X
Fi //

L′f
��

FP

Fα
��

L′Y
Fooo

L′g
��

LX ′
i′ // P ′ LY ′

o′oo L′X ′
Fi′ // FP ′ L′Y ′.

Fo′oo

Proof. This follows from the theory of structured cospans. More generally, suppose A is a category
with finite coproducts and X,X′ are categories with finite colimits. Suppose there is a commuting
triangle of left adjoints

A
L //

L′

X

F

��

X′.

Then Lemma 14 gives us symmetric monoidal double categories LCsp(X) and L′Csp(X′), and a
result of the first author and Courser [2, Thm. 4.3] gives a symmetric monoidal double functor

Csp(F) : LCsp(X)→ L′Csp(X′)

that is the identity on objects and vertical morphisms, and acts as follows on horizontal 1-cells and
2-morphisms:

La
i //

Lf

��

x

α

��

Lb
ooo

Lg 7→
��

L′a
Fi //

L′f
��

Fx

Fα
��

L′b
Fooo

L′g
��

La′
i′ // x′ Lb′

o′oo L′a′
Fi′ // Fx′ L′b′.

Fo′oo

In the case at hand, where the commutative triangle is

Set
L //

L′ ##

Petri

F

��

CMC,

this double functor Csp(F) is what we are calling Open(F). �

We can think of the commutative monoidal category FP as providing an operational semantics
for the Petri net P : morphisms in this category are processes allowed by the Petri net. The above
theorem says that this semantics is compositional. That is, if we write P as a composite (or

OPEN PETRI NETS 15

tensor product) of smaller open Petri nets, FP will be the composite (or tensor product) of the
corresponding open commutative monoidal categories.

It is worthwhile comparing the work of some other authors. Baldan, Corradini, Ehrig and Heckel
[4] consider a category of Petri nets that is the same as our Petri. They define an ‘open net’ to a
Petri net P equipped two subsets X and Y of its set of places. If one weakened this requirement
slightly to demand merely that X and Y are equipped with injections into the set of places, the
corresponding class of open Petri nets

P

LX

i

==

LY

o

aa

would be precisely those for which i and o are monic. This class of open Petri nets is closed under
our form of horizontal composition. However, the authors take a different approach to composing
open nets. They consider a compositional semantics for open nets, but only for those of a special
kind, called ‘deterministic occurrence nets’ because there is never any choice about what a token
can do. They do not describe this semantics as a functor.

Bruni, Melgratti, Montanari and Sobociński [6, 7] also consider a category of Petri nets that
matches our Petri. Given m,n ∈ N, they define a ‘P/T -net with boundary’ P : m → n to be a
Petri net P = (s, t : T → N[S]) equipped with maps i : T → Nm, o : T → Nn. Thus, we may think
of each transition as having, besides its usual source and target, an input which is a multisubset of
{1, . . . ,m} and an output which is a multisubset of {1, . . . , n}. They define a way to compose P/T -
nets with boundary using ‘synchronization’, and show this makes isomorphism classes of P/T -nets
into the morphisms of a category. They also describe an operational semantics for P/T nets with
boundary using a ‘tile calculus’, which is essentially a double category [9]. However, the vertical
direction in this double category has a fundamentally different meaning that in Open(Petri): it is
used to describe the process of firing transitions.

As already mentioned, the operational semantics used here implements the ‘collective token
philosophy’, meaning that tokens are treated as indistinguishable. By contrast, in the ‘individual
token philosophy’ swapping two tokens is treated as a nontrivial process. Glabbeek and Plotkin
argue that these philosophies give different interpretations of causality in Petri nets [20]. The key
mathematical difference is that the individual token philosophy uses symmetric monoidal categories
that are not commutative, so their symmetries are not identity morphisms. Bruni et al. showed
that for a Petri net P , a category whose morphisms represent processes of P under the individual
token philosophy can be freely generated by equipping the inputs and outputs of each transition
with an ordering [8]. Petri nets equipped with these orders are called ‘pre-nets’. In [30, Sec. 6.1],
an operational semantics for pre-nets is described as a left adjoint

Z : PreNet→ SSMC

where PreNet is an appropriate category of pre-nets and SSMC is the category of strict symmetric
monoidal categories. In a similar way to Thm. 17, this left adjoint can be extended to a symmetric
monoidal double functor

Open(Z) : Open(PreNet)→ Open(SSMC)

This double functor explicates the way in which the more nuanced semantics of the individual token
philosophy can be built in a compositional way. A proof of existence and a detailed explanation of
this double functor will be left to future work.

16 OPEN PETRI NETS

5. The Double Category of Relations

Using the language of functorial semantics, Open(Petri) can be thought of as a syntax for
describing open systems, and reachability as a choice of semantics. To implement this, we show
that the reachability relation of a Petri net can be defined for open Petri nets in a way that gives a
lax double functor from Open(Petri) to the double category of relations constructed by Grandis and
Paré [22, Sec. 3.4]. Here we recall this double category and give it a symmetric monoidal structure.

This double category, which we call Rel, has:

• sets as objects,
• functions f : X → Y as vertical 1-morphisms from X to Y ,
• relations R ⊆ X × Y as horizontal 1-cells from X to Y ,
• squares

X1 Y1

X2 Y2

R ⊆ X1 × Y1

gf

S ⊆ X2 × Y2

obeying (f × g)R ⊆ S as 2-morphisms.

The last item deserves some explanation. A preorder is a category such that for any pair of objects
a, b there exists at most one morphism α : x → y. When such a morphism exists we usually write
x ≤ y. Similarly there is a kind of double category for which given any frame—that is, any
collection of objects, vertical 1-morphisms and horizontal 1-cells as follows:

X1 Y1

X2 Y2

M

gf

N

there exists at most one 2-morphism

X1 Y1

X2 Y2

⇓ α

M

gf

N

filling this frame. Following [1] we call this a degenerate double category. Our definition of the
2-morphism in Rel will imply that this double category is degenerate.

Composition of vertical 1-morphisms in Rel is the usual composition of functions, while composi-
tion of horizontal 1-cells is the usual composition of relations. Since composition of relations obeys
the associative and unit laws strictly, Rel will be a strict double category. Since Rel is degenerate,

OPEN PETRI NETS 17

there is at most one way to define the vertical composite of 2-morphisms

X1 Y1

X2 Y2

⇓ α

X3 Y3

⇓ β

=

X1 Y1

X3 Y3

⇓ βα

R ⊆ X1 × Y1

gf

f ′

T ⊆ X3 × Y3

g′

S ⊆ X2 × Y2

R ⊆ X1 × Y1

g′gf ′f

T ⊆ X3 × Y3

so we need merely check that a 2-morphism βα filling the frame at right exists. This amounts to
noting that

(f × g)R ⊆ S, (f ′ × g′)S ⊆ T =⇒ (f ′ × g′)(f × g)R ⊆ T.
Similarly, there is at most one way to define the horizontal composite of 2-morphisms

X1 Y1

X2 Y2

⇓ α

Z1

Z2

⇓ α′ =

X1 Z1

X2 Z2

⇓ α′ ◦ α

R ⊆ X1 × Y1

gf

S ⊆ X2 × Y2

R′ ⊆ Y1 × Z1

h

S′ ⊆ Y2 × Z2

R′R ⊆ X1 × Z1

f

S′S ⊆ X2 × Z2

h

so we need merely check that a filler α′ ◦ α exists, which amounts to noting that

(f × g)R ⊆ S, (g × h)R′ ⊆ S′ =⇒ (f × h)(R′R) ⊆ S′S.

Theorem 18. There exists a strict double category Rel with the above properties.

Proof. We use the definition of double category in Appendix A (Def. 25), which introduces two
concepts not mentioned so far: the category of objects and the category of arrows. We define the
category of objects Rel0 to have sets as objects and functions as morphisms. We define the category
of arrows Rel1 to have relations as objects and squares

X1 X2

Y1 Y2

R ⊆ X1 ×X2

gf

S ⊆ Y1 × Y2

with (f ×g)R ⊆ S as morphisms. The source and target functors S, T : Rel1 → Rel0 are clear. The
identity-assigning functor u : Rel0 → Rel1 sends a set X to the identity function 1X and a function

18 OPEN PETRI NETS

f : X → Y to the unique 2-morphism

X X

Y Y

1X

ff

1Y

The composition functor � : Rel1 ×Rel0 Rel1 → Rel1 acts on objects by the usual composition
of relations, and it acts on 2-morphisms by horizontal composition as described above. These
functors can be shown to obey all the axioms of a double category. In particular, because Rel
is degenerate, all the required equations between 2-morphisms, such as the interchange law, hold
automatically. �

Next we make Rel into a symmetric monoidal double category. To do this, we first give Rel0 = Set
the symmetric monoidal structure induced by the cartesian product. Then we give Rel1 a symmetric
monoidal structure as follows. Given relations R1 ⊆ X1 × Y1 and R2 ⊆ X2 × Y2, we define

R1 ×R2 = {(x1, x2, y1, y2) : (x1, y1) ∈ R1, (x2, y2) ∈ R2} ⊆ X1 ×X2 × Y1 × Y2.
Given two 2-morphisms in Rel1:

X1 Y1

X2 Y2

X ′1 Y ′1

X ′2 Y ′2

⇓ α′⇓ α

R ⊆ X1 × Y1

gf

S ⊆ X2 × Y2

R′ ⊆ X′1 × Y
′
1

g′f ′

S′ ⊆ X′2 × Y
′
2

there is at most one way to define their product

X1 ×X ′1 Y1 × Y ′1

X2 ×X ′2 Y2 × Y ′2

⇓ α× α′

R× R′ ⊆ (X1 ×X′1)× (Y1 × Y ′1)

g × g′f × f ′

S × S′ ⊆ (X2 ×X′2)× (Y2 × Y ′2)

because Rel is degenerate. To show that α× α′ exists, we need merely note that

(f × g)R ⊆ S, (f ′ × g′)R′ ⊆ S′ =⇒ (f × f ′ × g × g′)(R×R′) ⊆ S × S′.

Theorem 19. The double category Rel can be given the structure of a symmetric monoidal double
category with the above properties.

Proof. We have described Rel0 and Rel1 as symmetric monoidal categories. The source and target
functors S, T : Rel1 → Rel0 are strict symmetric monoidal functors. We must also equip Rel
with two other pieces of structure. One, called χ, says how the composition of horizontal 1-cells

OPEN PETRI NETS 19

interacts with the tensor product in the category of arrows. The other, called µ, says how the
identity-assigning functor u relates the tensor product in the category of objects to the tensor
product in the category of arrows. These are defined as follows. Given four horizontal 1-cells

R1 ⊆ X1 × Y1, R2 ⊆ Y1 × Z1,

S1 ⊆ X2 × Y2, S2 ⊆ Y2 × Z2,

the globular 2-isomorphism χ : (R2 × S2)(R1 × S1)⇒ (R2R1)× (S2S1) is the identity 2-morphism

X1 ×X2 Z1 × Z2

X1 ×X2 Z1 × Z2

(R2 × S2)(R1 × S1)

11

(R2R1)× (S2S1)

The globular 2-isomorphism µ : u(X × Y)⇒ u(X)× u(Y) is the identity 2-morphism

X × Y X × Y

X × Y X × Y

1X×Y

11

1X × 1Y

All the commutative diagrams in the definition of symmetric monoidal double category (Defs. 29
and 30) can be checked straightforwardly. In particular, all diagrams of 2-morphisms commute
automatically because Rel is degenerate. �

6. The Reachability Semantics

Now we explain how Open(Petri) provides a compositional approach to the reachability problem.
In particular, we prove that the reachability semantics defines a lax double functor

� : Open(Petri)→ Rel

which is symmetric monoidal.

Definition 20. Let P be a Petri net (s, t : T → N[S]). A marking of P is an element m ∈ N[S].
Given a transition τ ∈ T , a firing of τ is a tuple (τ,m, n) such that m ≥ s(τ) and n+s(τ) = m+t(τ).
We say that a marking n is reachable from a marking m if for some k ≥ 1 there is a sequence
of markings m = m1, . . . ,mk = n and firings {(τi,mi,mi+1)}k−1i=1 . In particular, taking k = 1, any
marking is reachable from itself with no firings.

Given two markings of a Petri net, the problem of deciding whether one is reachable from the
other is called the ‘reachability problem’. In 1984 Mayr showed that the reachability problem is
decidable [31]. However, it is a very hard problem: in 1976 Lipton had showed that it requires at
least exponential space, and in fact any EXPSPACE algorithm can be reduced in polynomial time
to a Petri net reachability problem [28]. More recently, lower and upper bounds on the time to

20 OPEN PETRI NETS

solve the reachability problem have been found [13, 27]. The lower bound grows much faster than
the Ackermann function.

There is a close connection between reachability and the free commutative monoidal category on
a Petri net constructed in Lemma 9.

Proposition 21. If m and n are markings of a Petri net P , then n is reachable from m if and
only if there is a morphism f : m→ n in FP .

Proof. If n is reachable from m, there is a sequence of markings m = m1, . . . ,mk = n and firings
{(τi,mi,mi+1)}k−1i=1 . For each firing (τi,mi,mi+1) there is a morphism in FP given by

τi + 1mi−s(τi) : mi → mi+1.

Taking the composite of these morphisms gives a morphism f : m→ n in FP .
Conversely, if f : m→ n is a morphism in FP , it can be obtained by composition and addition

(that is, the tensor product) from morphisms arising from the basic transitions and symmetry
morphisms. Because + is a functor, we have the interchange law

(f1 ◦ g1) + (f2 ◦ g2) = (f1 + f2) ◦ (g1 + g2)

whenever f1, g1 and f2, g2 are pairs of composable morphisms in FP . We can use this inductively
to simplify f into a composite of sums. If f1 : a1 → b1 and f2 : a2 → b2 are morphisms in FP , the
interchange law also tells us that

f1 + f2 = (f1 ◦ 1a1) + (1b2 ◦ f2) = (f1 + 1b2) ◦ (1a1 + f2).

This fact allows us to inductively simplify f to a composite of sums each containing one transition.
The factors in this composite correspond to firings that make n reachable from m. (Here we allow
the possibility of an empty composite, which corresponds to an identity morphism.) �

Definition 22. We define the reachability relation of an open Petri net

LX
i // P LY

ooo

to be the relation

�P = {(x, y) ∈ N[X]× N[Y]| o(y) is reachable from i(x)} ⊆ N[X]× N[Y].

Note that �P depends on the whole open Petri net P : X 9 Y , not just its underlying Petri net
P . By Prop. 21,

�P = {(x, y) ∈ N[X]× N[Y]| ∃h : F (i)(x)→ F (o)(y)}.
Here F (i)(x) and F (o)(y) are objects of the category FP , and the reachability relation holds iff
there is a morphism in FP from the first of these to the second.

Theorem 23. There is a lax double functor � : Open(Petri) → Rel, called the reachability
semantics, that sends

• any object X to the underlying set of the free commutative monoid N[X], which we denote
simply as N[X],

• any vertical 1-morphism f : X → Y to the underlying function of N[f],
• any horizontal 1-cell, that is, any open Petri net

LX
i // P LY,

ooo

to the reachability relation �P .

OPEN PETRI NETS 21

• any 2-morphism α : P ⇒ P ′, that is any commuting diagram

LX

Lf

��

i // P

α

��

LY
ooo

Lg

��

LX ′
i′ // P ′ LY ′,

o′oo

to the square

N[X] N[Y]

N[X ′] N[Y ′].

�P ⊆ X × Y

N[g]N[f]

�P ′ ⊆ X′ × Y ′

Proof. We construct � as the composite G ◦ Csp(F) where

Csp(F) : Open(Petri)→ Open(CMC)

is the double functor constructed in Thm. 17 and

G : Open(CMC)→ Rel

is defined as follows. Recall that we have categories of objects

Open(CMC)0 = Rel0 = Set.

We defineG0 : Open(PetriCat)0 → Rel0 to be the functor N : Set→ Set. We defineG1 : Open(CMC)1 →
Rel1 as follows:

N[X] N[Y]

N[X ′] N[Y ′].

G1C ⊆ N[X]× N[Y]

N[g]N[f]

G1C
′ ⊆ N[X′]× N[Y ′]

7→

L′X

L′X ′ C ′ L′Y ′

C L′Y
i o

i′ o′

L′f L′gα

Recall that the set of objects of L′X is N[X] and the set of objects of L′Y is N[Y]. We define G1C
to be the relation

{(x, y) ∈ L′X × L′Y | h : i(x)→ o(y) for some h in C} ⊆ N[X]× N[Y]

and G1α to be the inclusion

(N[f]× N[g])G1C ⊆ G1C
′.

To see that this inclusion is well-defined, suppose (x, y) ∈ G1C. Then there exists a morphism
h : i(x)→ o(y) in C. We thus have a morphism α(h) : α(i(x))→ α(o(y)) in C ′. However, on objects
we have α ◦ i = i′ ◦L′f = i′ ◦N[f] and similarly α ◦ o = o′ ◦N[g], so α(h) : i′(N[f](x))→ o′(N[g](y)).
It follows that (N[f]× N[g])(x, y) ∈ G1C

′.
Next we prove that G is a lax double functor. First note that by construction we have the

following equalities:

S ◦G1 = G0 ◦ S, T ◦G1 = G0 ◦ T.

22 OPEN PETRI NETS

Next we need the composition comparison required by Def. 27. Suppose we compose C : X 9 Y
and D : Y 9 Z in Open(CMC):

C +L′Y D

C

jC

::

D

jD

dd

L′X

i1

;;

L′Y

o1

dd

i2

::

L′Z.

o2

cc

We need to prove that

G1(D)�G1(C) ⊆ G1(D � C).

We have

G1(D � C) = {(x, z) ∈ L′X × L′Z | ∃h : jCi1(x)→ jDo2(z)}.

On the other hand,

G1C = {(x, y) ∈ L′X × L′Y | ∃m : i1(x)→ o1(y)}

and

G1D = {(y, z) ∈ L′Y × L′Z | ∃n : i2(y)→ o2(z)}

which compose to give the relation

G1D � G1C = {(x, z) ∈ L′X × L′Z | ∃y (x, y) ∈ G1C and (y, z) ∈ G1D}.

Suppose (x, z) ∈ G1D �G1C. Then there exist morphisms m : i1(x)→ o1(y) in C and n : i2(y)→
o2(z) in D. By commutativity of the pushout square, jCo1 = jDi2. Therefore, the codomain of
jC(m) is jCo1(y) = jDi2(y), which is also the domain of jD(n). This allows us to form the composite

jD(n) ◦ jC(m) : jCi1(x)→ jDo2(z).

Thus (x, z) ∈ G1(D � C) as desired.
We also need the identity comparison required by Def. 27. Thus, we need

UG0(X) ⊆ G1(UX)

for any set X. By definition, UX ∈ Open(CMC)1 is the cospan

L′X
1 // L′X L′X.

1oo

Because L′X has no non-identity morphisms, G1 maps this to the identity relation on the set N[X].
On the other hand, G0(X) = N[X] and UG0(X) is the identity relation on this set. So, the desired
inclusion is actually an equality.

Finally, because Rel is a degenerate double category, the composition and identity comparisons
for G are trivially natural transformations. For the same reason, the diagrams in Def. 27 expressing
compatibility with the associator, left unitor, and right unitor also commute trivially. It follows
that G is a lax double functor.

To complete the proof, one simply computes the composite � = G ◦ Csp(F) and checks that it
matches the description in the theorem statement. �

OPEN PETRI NETS 23

The reachability semantics is only lax: given two open Petri nets P : X 9 Y and Q : Y 9 Z,
the composite of �Q and �P is in general a proper subset of �(Q� P). To see this, take P to be
this open Petri net:

A B

C

D

α

β

X

1

Y

2

3

4

and take Q to be this:

B

C

D E

γ

δ

Z

5

Y

2

3

4

Then their composite, Q� P : X 9 Z, looks like this:

A B

C

D

α

β

X

1 B

C

D E

γ

δ

Z

5

We have

�P = {(n, n, 0, 0)| n ∈ N} ⊆ N× N3

since tokens starting at A can only move to B, and similarly

�Q = {(0, 0, n, n)| n ∈ N} ⊆ N3 × N.

It follows that

�Q��P = {(0, 0)} ⊆ N× N.
On the other hand

�(Q� P) = {(n, n)| n ∈ N} ⊆ N× N
since in the composite open Petri net QP tokens can move from A to E. The point is that tokens
can only accomplish this by leaving the open Petri net P , going to Q, then returning to P , then
going to Q. The composite relation �Q ��P only keeps track of processes where tokens leave P ,
move to Q, and never reenter P .

This makes it all the more impressive that the operational semantics

Open(F) : Open(Petri)→ Open(CMC)

24 OPEN PETRI NETS

is not lax:

Open(Q� P) ∼= Open(Q)�Open(P).

We can see the difference in the example above: Open(Q) � Open(P) contains a morphism
δβγα : A → E which describes a process where tokens start in P , go to Q, then reenter P , and
finally end in Q.

On the other hand, the reachability semantics is maximally compatible with running Petri nets
in parallel:

Theorem 24. The reachability semantics � : Open(Petri)→ Rel is symmetric monoidal.

Proof. Because Csp(F) is symmetric monoidal it suffices to show that

G : Open(CMC)→ Rel

is symmetric monoidal. This is simplified by that fact that Rel is a degenerate double category.
Following Def. 31, it suffices to show that

• G0 : (Set,+)→ (Set,×) is symmetric monoidal,
• G1 : Open(CMC)1 → Rel1 is symmetric monoidal,
• we have equations of monoidal functors

S ◦G1 = G0 ◦ S, T ◦G1 = G0 ◦ T,

• the composition and unit comparisons are monoidal natural transformations.

To show these things, first recall that G0 = N = K◦J where K : CommMon→ Set is the forgetful
functor and J : Set → CommMon is its left adjoint. Since J is a left adjoint it preserves finite
coproducts. Since K : CommMon → Set is a right adjoint is preserves finite products. However,
finite products in CommMon are also finite coproducts. Thus, G0 maps finite coproducts to finite
products, and is thus a symmetric monoidal functor from (Set,+) to (Set,×).

Next, suppose we are given two open commutative monoidal categories

L′X
i // C L′Y,

ooo L′X ′
i′ // C ′ L′Y ′.

o′oo

Their tensor product is

L′(X +X ′)
i+i′

// C + C ′ L′(Y + Y ′)
o+o′
oo .

The set of objects of L′(X+X ′) is naturally isomorphic to N[X]×N[X ′], and similarly for L′(Y +Y ′),
so we have natural isomorphisms

G1(C + C ′) ∼=

{((x, x′, y, y′) ∈ N[X]× N[X ′]× N[Y]× N[Y ′] | ∃h : i(x)→ o(y) and ∃h′ : i′(x′)→ o′(y′)}

∼= G1(C)×G1(C ′).

Using this fact one can check that G1 is symmetric monoidal.
One can check that the equations S ◦ G1 = G0 ◦ S and T ◦ G1 = G0 ◦ T are equations of

monoidal functors, and the composition and unit comparisons of G are trivially monoidal natural
transformations because Rel is degenerate. �

OPEN PETRI NETS 25

7. Conclusions

The ideas presented here can be adapted to handle timed Petri nets, colored Petri nets with
guards, and other kinds of Petri nets. One can also develop a reachability semantics for open Petri
nets that are glued together along transitions as well as places. We hope to treat some of these
generalizations in future work.

It would be valuable to have �(QP) = �Q � �P , since then the reachability relation for an
open Petri net could be computed compositionally, not merely ‘approximated from below’ using
�Q��P ⊆ �(Q� P). We conjecture that �(Q� P) = �Q��P if P and Q are ‘one-way’ open
Petri nets. Here an open Petri net

LX
i // P LY

ooo

is one-way if no place in the image of i appears in the target t(τ) of any transition τ of P , and no
place in the image of o appears in the source s(τ) of any transition τ of P . One-way open Petri nets
should be the horizontal 1-cells in a full sub-double category OneWay(Petri) of Open(Petri), and
we conjecture that the reachability semantics restricts to an actual (not merely lax) double functor

� : OneWay(Petri)→ Rel.

Acknowledgements. We would like to thank Kenny Courser for help with double categories and
for a careful reading of this paper. We thank Christina Vasilakopoulou for spending many hours
helping us figure out how to turn Petri nets into commutative monoidal categories. We also thank
Daniel Cicala, Joe Moeller, and Christian Williams for many insightful conversations.

Appendix A. Double Categories

What follows is a brief introduction to double categories. A more detailed exposition can be
found in the work of Grandis and Paré [22, 23], and for monoidal double categories the work of
Shulman [40]. We use ‘double category’ to mean what earlier authors called a ‘pseudo double
category’.

Definition 25. A double category is a category weakly internal to Cat. More explicitly, a double
category D consists of:

• a category of objects D0 and a category of arrows D1,
• source and target functors

S, T : D1 → D0,

an identity-assigning functor

U : D0 → D1,

and a composition functor

� : D1 ×D0 D1 → D1

where the pullback is taken over D1
T−→ D0

S←− D1, such that

S(UA) = A = T (UA), S(M �N) = SN, T (M �N) = TM,

• natural isomorphisms called the associator

αN,N ′,N ′′ : (N �N ′)�N ′′ ∼−→ N � (N ′ �N ′′),
the left unitor

λN : UT (N) �N
∼−→ N,

26 OPEN PETRI NETS

and the right unitor

ρN : N � US(N)
∼−→ N

such that S(α), S(λ), S(ρ), T (α), T (λ) and T (ρ) are all identities and such that the standard
coherence axioms hold: the pentagon identity for the associator and the triangle identity
for the left and right unitor [29, Sec. VII.1].

If α, λ and ρ are identities, we call D a strict double category.

Objects of D0 are called objects and morphisms in D0 are called vertical 1-morphisms.
Objects of D1 are called horizontal 1-cells of D and morphisms in D1 are called 2-morphisms.
A morphism α : M → N in D1 can be drawn as a square:

A B

C D

⇓ α

M

gf

N

where f = Sα and g = Tα. If f and g are identities we call α a globular 2-morphism. These
give rise to a bicategory:

Definition 26. Let D be a double category. Then the horizontal bicategory of D, denoted
H(D), is the bicategory consisting of objects, horizontal 1-cells and globular 2-morphisms of D.

We have maps between double categories, and also transformations between maps:

Definition 27. Let A and B be double categories. A double functor F : A→ B consists of:

• functors F0 : A0 → B0 and F1 : A1 → B1 obeying the following equations:

S ◦ F1 = F0 ◦ S, T ◦ F1 = F0 ◦ T,

• natural isomorphisms called the composition comparison:

φ(N,N ′) : F1(N)� F1(N ′)
∼−→ F1(N �N ′)

and the identity comparison:

φA : UF0(A)
∼−→ F1(UA)

whose components are globular 2-morphisms,

such that the following diagram commmute:

• a diagram expressing compatibility with the associator:

(F1(N)� F1(N ′))� F1(N ′′)

φ(N,N ′)�1
��

α // F1(N)� (F1(N ′)� F1(N ′′))

1�φ(N ′,N ′′)
��

F1(N �N ′)� F1(N ′′)

φ(N�N ′,N ′′)
��

F1(N)� F1(N ′ �N ′′)

φ(N,N ′�N ′′)
��

F1((N �N ′)�N ′′)
F1(α)

// F1(N � (N ′ �N ′′))

OPEN PETRI NETS 27

• two diagrams expressing compatibility with the left and right unitors:

F1(N)� UF0(A)

F1(N)� F1(UA)

F1(N)

F1(N � UA)

1� φA F1(ρN)

ρF1(N)

φ(N,UA)

UF0(B) � F1(N)

F1(UB)� F1(N)

F1(N)

F1(UB �N).

φB � 1

φ(UB , N)

λF1(N)

F1(λN)

If the 2-morphisms φ(N,N ′) and φA are identities for all N,N ′ ∈ A1 and A ∈ A0, we say F : A→ B
is a strict double functor. If on the other hand we drop the requirement that these 2-morphisms
be invertible, we call F a lax double functor.

Definition 28. Let F : A → B and G : A → B be lax double functors. A transformation
β : F ⇒ G consists of natural transformations β0 : F0 ⇒ G0 and β1 : F1 ⇒ G1 (both usually written
as β) such that

• S(βM) = βSM and T (βM) = βTM for any object M ∈ A1,
• β commutes with the composition comparison, and
• β commutes with the identity comparison.

Shulman defines a 2-category Dbl of double categories, double functors, and transformations
[40]. This has finite products. In any 2-category with finite products we can define a pseudomonoid
[14], which is a categorification of the concept of monoid. For example, a pseudomonoid in Cat is
a monoidal category.

Definition 29. A monoidal double category is a pseudomonoid in Dbl. Explicitly, a monoidal
double category is a double category equipped with double functors ⊗ : D× D→ D and I : ∗ → D
where ∗ is the terminal double category, along with invertible transformations called the associator:

A : ⊗ ◦ (1D ×⊗)⇒ ⊗ ◦ (⊗× 1D),

left unitor:
L : ⊗ ◦ (1D × I)⇒ 1D,

and right unitor:
R : ⊗ ◦ (I × 1D)⇒ 1D

satisfying the pentagon axiom and triangle axioms.

This definition neatly packages a large quantity of information. Namely:

• D0 and D1 are both monoidal categories.
• If I is the monoidal unit of D0, then UI is the monoidal unit of D1.
• The functors S and T are strict monoidal.
• ⊗ is equipped with composition and identity comparisons

χ : (M1 ⊗N1)� (M2 ⊗N2)
∼−→ (M1 �M2)⊗ (N1 �N2)

µ : UA⊗B
∼−→ (UA ⊗ UB)

28 OPEN PETRI NETS

making three diagrams commute as in Def. 27.
• The associativity isomorphism for ⊗ is a transformation between double functors.
• The unit isomorphisms are transformations between double functors.

Definition 30. A braided monoidal double category is a monoidal double category equipped
with an invertible transformation

β : ⊗ ⇒ ⊗ ◦ τ
called the braiding, where τ : D×D→ D×D is the twist double functor sending pairs in the object
and arrow categories to the same pairs in the opposite order. The braiding is required to satisfy
the usual two hexagon identities [29, Sec. XI.1]. If the braiding is self-inverse we say that D is a
symmetric monoidal double category.

In other words:

• D0 and D1 are braided (resp. symmetric) monoidal categories,
• the functors S and T are strict braided monoidal functors, and
• the braiding is a transformation between double functors.

Definition 31. A monoidal lax double functor F : D→ D between monoidal double categories
D and D is a lax double functor F : D→ D such that

• F0 and F1 are monoidal functors,
• SF1 = F0S and TF1 = F0T are equations between monoidal functors, and
• the composition and unit comparisons φ(N1, N2) : F1(N1) � F1(N2) → F1(N1 � N2) and
φA : UF0(A) → F1(UA) are monoidal natural transformations.

The monoidal lax double functor is braided if F0 and F1 are braided monoidal functors and
symmetric if they are symmetric monoidal functors.

References

[1] J. C. Baez and K. Courser, Coarse-graining open Markov processes, Theor. Appl. Categ. 33 (2018), 1223–1268.

Available as arXiv:1710.11343. (Referred to on page 3, 16.)

[2] J. C. Baez and K. Courser, Structured cospans. Available as arXiv:1911.04630. (Referred to on page 5, 9, 12,
14.)

[3] J. C. Baez and B. Pollard, A compositional framework for reaction networks, Rev. Math. Phys. 29 (2017),

1750028. Available as arXiv:1704.02051. (Referred to on page 1.)
[4] P. Baldan, A. Corradini, H. Ehrig, and R. Heckel, Compositional semantics for open Petri nets based on

deterministic processes, Math. Str. Comp. Sci. 15 (2005), 1–35. (Referred to on page 1, 6, 15.)
[5] P. Baldan, F. Bonchi, F. Gadducci and G. V. Monreale, Modular encoding of synchronous and asynchronous

interactions using open Petri nets, Sci. Comp. Prog. 109 (2015), 96–124. (Referred to on page 1, 6.)

[6] R. Bruni, H. C. Melgratti and U. Montanari, A connector algebra for P/T nets interactions, in Concurrency
Theory (CONCUR ‘11), Lecture Notes in Computer Science 6901, Springer, Berlin, 2011, pp. 312–326. (Referred

to on page 1, 15.)

[7] R. Bruni, H. C. Melgratti, U. Montanari and P. Sobociński, A connector algebra for C/E and P/T nets’
interactions, Log. Meth. Comp. Sci. 9 (2013), lmcs:883. Available as arXiv:1307.0204. (Referred to on page 1,

15.)

[8] R. Bruni, J. Meseguer, U. Montanari and V. Sassone, Functorial models for Petri nets, Information and Com-
putation 170 (2001), 207–236. (Referred to on page 1, 15.)

[9] R. Bruni, J. Meseguer and U. Montanari, Symmetric monoidal and cartesian double categories as a semantic

framework for tile logic, Math. Struct. Comp. Sci. 12 (2002), 53–90. (Referred to on page 3, 15.)
[10] R. M. Burstall, and D. E. Rydeheard, Computational Category Theory, Prentice Hall, Englewood Cliffs, 1988.

(Referred to on page 12.)

https://arxiv.org/abs/1710.11343
https://arxiv.org/abs/1911.04630
https://arxiv.org/abs/1704.02051
https://arxiv.org/abs/1307.0204

OPEN PETRI NETS 29

[11] F. Clerc, H. Humphrey and P. Panangaden, Bicategories of Markov processes, in Models, Algorithms, Logics
and Tools, Lecture Notes in Computer Science 10460, Springer, Berlin, 2017, pp. 112–124. (Referred to on page

3.)

[12] K. Courser, A bicategory of decorated cospans, Theor. Appl. Categ. 32 (2017), 995–1027. Available as
arXiv:1605.08100. (Referred to on page 3.)

[13] W. Czerwinski, S. Lasota, R. Lazic, J. Leroux and F. Mazowiecki, The reachability problem for Petri nets is not
elementary. Available as arXiv:1809.07115. (Referred to on page 20.)

[14] B. Day and R. Street, Monoidal bicategories and Hopf algebroids, Adv. Math. 129 (1997), 99–157. (Referred to

on page 27.)
[15] P. Degano, J. Meseguer and U. Montanari, Axiomatizing net computations and processes, in Logic in Computer

Science, 1989, IEEE, New Jersey, pp. 175–185. Available at https://www.computer.org/csdl/proceedings/lics/

/1989/1954/00/00039172.pdf. (Referred to on page 5, 6.)
[16] C. Ehresmann, Catégories structurées III: Quintettes et applications covariantes, Cah. Top. Géom. Diff. 5 (1963),

1–22. (Referred to on page 3.)

[17] C. Ehresmann, Catégories et Structures, Dunod, Paris, 1965. (Referred to on page 3.)
[18] P. J. Freyd and G. M. Kelly, Categories of continuous functors, I, Jour. Pure Appl. Alg. 2 (1972), 169–191.

(Referred to on page 13.)

[19] C. Girault and R. Valk, Petri Nets for Systems Engineering: a Guide to Modeling, Verification, and Applications,
Springer, Berlin, 2013. (Referred to on page 1.)

[20] R. J. van Glabbeek and G. D. Plotkin, Configuration structures, event structures and Petri nets, Theoretical

Computer Science 410 (2009), 4111–4159. Available as arXiv:0912.4023. (Referred to on page 5, 15.)
[21] R. Gorrieri, Process Algebras for Petri Nets—The Alphabetization of Distributed Systems, Springer, Berlin,

2017. (Referred to on page 1.)
[22] M. Grandis and R. Paré, Limits in double categories, Cah. Top. Géom. Diff. 40 (1999), 162–220. (Referred to

on page 16, 25.)

[23] M. Grandis and R. Paré, Adjoints for double categories, Cah. Top. Géom. Diff. 45 (2004), 193–240. (Referred
to on page 25.)

[24] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and Validation of Concurrent Systems, Springer,

Berlin 2009. (Referred to on page 1.)
[25] E. Lerman, Networks of open systems, J. Geom. Phys. 130 (2018), 81–112. Available as arXiv:1705.04814.

(Referred to on page 3.)

[26] E. Lerman and D. Spivak, An algebra of open continuous time dynamical systems and networks. Available as
arXiv:1602.01017. (Referred to on page 3.)

[27] J. Leroux and S. Schmitz, Demystifying reachability in vector addition systems, in LICS ’15: 30th Annual

ACM/IEEE Symposium on Logic in Computer Science, New Jersey, IEEE, 2015, pp. 56–67. Also available as
arXiv:1503.00745. (Referred to on page 20.)

[28] R. Lipton, The reachability problem is exponential-space-hard, Tech. Rep. 62 (1976), Dept. of Computer Science,
Yale U. (Referred to on page 19.)

[29] S. Mac Lane, Categories for the Working Mathematician, Springer, Berlin, 1998. (Referred to on page 26, 28.)

[30] J. Master, Petri nets based on Lawvere theories, Math. Struct. Comp. Sci. 30 (2020), 833–864. Also available
as arXiv:1904.09091 (Referred to on page 7, 15.)

[31] E. Mayr, An algorithm for the general Petri net reachability problem, SIAM J. Comput. 13 (1984), 441–460.

(Referred to on page 19.)
[32] J. Meseguer and U. Montanari, Petri nets are monoids, Information and Computation 88 (1990), 105–155.

(Referred to on page 2, 5, 6.)
[33] T. Ngotiaoco, Compositionality of the Runge–Kutta method. Available as arXiv:1707.02804. (Referred to on

page 3.)

[34] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice–Hall, New Jersey, 1981. (Referred to

on page 1.)
[35] J. Rathke, P. Sobociński and O. Stephens, Compositional reachability in Petri nets, in International Work-

shop on Reachability Problems, Lecture Notes in Computer Science 8762, Springer, Berlin, 2014. Available at
http://users.ecs.soton.ac.uk/ps/papers/rp2014.pdf. (Referred to on page 1.)

[36] V. Sassone, Strong concatenable processes: an approach to the category of Petri net computations, BRICS

Report Series, Dept. of Computer Science, U. Aarhus, 1994. Available at https://tidsskrift.dk/brics/article/
view/21610/19059. (Referred to on page 5, 6.)

https://arxiv.org/abs/1605.08100
https://arxiv.org/abs/1809.07115
https://www.computer.org/csdl/proceedings/lics/
https://www.computer.org/csdl/proceedings/lics/
https://arxiv.org/abs/0912.4023
https://arxiv.org/abs/1705.04814
http://arxiv.org/abs/1602.01017
https://arxiv.org/abs/1503.00745
https://arxiv.org/abs/1904.09091
https://arxiv.org/abs/1707.02804
http://users.ecs.soton.ac.uk/ps/papers/rp2014.pdf
https://tidsskrift.dk/brics/article/view/21610/19059
https://tidsskrift.dk/brics/article/view/21610/19059

30 OPEN PETRI NETS

[37] V. Sassone, On the category of Petri net computations, in CAAP’92: 17th Colloquium on Trees in Al-
gebra and Programming, Lecture Notes in Computer Science 581, Springer, Berlin, 1992. Available at

https://eprints.soton.ac.uk/261951/1/strong-conf.pdf. (Referred to on page 5, 6.)

[38] V. Sassone, An axiomatization of the algebra of Petri net concatenable processes, Theor. Comput. Sci. 170
(1996), 277–296. Available at https://eprints.soton.ac.uk/261820/1/P-of-N-Off.pdf. (Referred to on page 5, 6.)

[39] V. Sassone and P. Sobociński, A congruence for Petri nets, Electron. Notes Theor. Comput. Sci. 127 (2005),
107–120. Available at https://eprints.soton.ac.uk/262302/1/petriCongPNGToff.pdf. (Referred to on page 1, 3.)

[40] M. Shulman, Constructing symmetric monoidal bicategories. Available as arXiv:1004.0993. (Referred to on page

5, 25, 27.)
[41] P. Sobociński and O. Stephens, Reachability via compositionality in Petri nets. Available as arXiv:1303.1399.

(Referred to on page 1.)

[42] M. Stay, Compact closed bicategories, Theor. Appl. Categ. 31 (2016), 755–798. Available as arXiv:1301.1053.
(Referred to on page 3.)

[43] T. Trimble, Multisorted Lawvere theories, version January 31 2019, nLab. Available at

http://ncatlab.org/toddtrimble/published/multisorted+Lawvere+theories. (Referred to on page 13.)

https://eprints.soton.ac.uk/261951/1/strong-conf.pdf
https://eprints.soton.ac.uk/261820/1/P-of-N-Off.pdf
https://eprints.soton.ac.uk/262302/1/petriCongPNGToff.pdf
https://arxiv.org/abs/1004.0993
https://arxiv.org/abs/1303.1399
http://arxiv.org/abs/1301.1053
http://ncatlab.org/toddtrimble/published/multisorted+Lawvere+theories

	1. Introduction
	2. From Petri Nets to Commutative Monoidal Categories
	3. Open Petri Nets
	4. The Operational Semantics
	5. The Double Category of Relations
	6. The Reachability Semantics
	7. Conclusions
	Appendix A. Double Categories
	References

