
GRAPHS WITH POLARITIES

JOHN C. BAEZ1,2 AND ADITTYA CHAUDHURI3,4

Abstract. In fields ranging from business to systems biology, directed graphs with edges labeled by signs are
used to model systems in a simple way: the nodes represent entities of some sort, and an edge indicates that
one entity directly affects another either positively or negatively. Multiplying the signs along a directed path
of edges lets us determine indirect positive or negative effects, and if the path is a loop we call this a positive
or negative feedback loop. Here we generalize this to graphs with edges labeled by a monoid, whose elements
represent ‘polarities’ possibly more general than simply ‘positive’ or ‘negative’. We study three notions of
morphism between graphs with labeled edges, each with its own distinctive application: to refine a simple
graph into a complicated one, to transform a complicated graph into a simple one, and to find recurring patterns
called ‘motifs’. We construct three corresponding symmetric monoidal double categories of ‘open’ graphs. We
study feedback loops using a generalization of the homology of a graph to homology with coefficients in a
commutative monoid. In particular, we describe the emergence of new feedback loops when we compose open
graphs using a variant of the Mayer–Vietoris exact sequence for homology with coefficients in a commutative
monoid.

1. Introduction

Graphs with edges labeled by elements of a fixed set are widely used as qualitative models of systems.
For example:

maternal mortality

government action

spending on maternal health care

quality of care

use of maternal health care

patient waiting time

+

+

+

−

+

−
+ −

+

This is a model of how health care can affect maternal mortality, a tiny simplified fragment of some larger
models in the literature [31, 43]. Vertices of this graph represent various variables in a system. Labeled
edges indicate how one variable can directly affect another. The label set in this example is {+,−}. An edge
labeled by + indicates that one variable has a direct positive effect on another: that is, increasing the former
tends to increase the latter, everything else being equal. Similarly, an edge labeled by − indicates that one
variable has a direct negative effect on another. In fact the set {+,−} naturally has the structure of a monoid,
with this multiplication table:

· + −

+ + −

− − +

Other monoids are also commonly used to label edges in diagrams of this sort, and even more could be
useful; we discuss these alternatives throughout the paper. The elements of such labeling sets are sometimes
called ‘polarities’.

1School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, UK
EH9 3FD

2Department ofMathematics, University of California, Riverside CA, USA 92521
3 Institute of Computer Science, University of Rostock, Albert-Einstein-Str. 22, 18059 Rostock, Germany
4 Statistics andMathematics Unit, Indian Statistical Institute Kolkata, 203 Barrackpore Trunk Road, Kolkata 700108, India
E-mail address: baez@math.ucr.edu, chaudhuriadittya@gmail.com.

1

2 GRAPHS WITH POLARITIES

Graphs with edges labeled by elements of {+,−} are called ‘causal loop diagrams’ in the modeling
tradition known as ‘system dynamics’. System dynamics was first thoroughly explained in Forrester’s 1961
book Industrial Dynamics, with the main application being to model fluctuations in supply chains [18].
Later Forrester collaborated with the mayor of Boston and applied the ideas to urban planning in his book
Urban Dynamics [19]. In 2000, Sterman wrote an influential text Business Dynamics applying these ideas
to the internal functioning of a business [45]. Later, system dynamics became widely used in health care
and other subjects, and in 2014, Hovmand emphasized the process of building models by gathering and
synthesizing information from diverse stakeholders in Community Based System Dynamics [23]. By now
there is a thriving community of systems dynamics practitioners, with an annual international conerence,
and software that helps them work with causal loop diagrams.

In a parallel line of development, biologists began using graphs with labeled edges to indicate how one
type of biomolecule can promote or inhibit the production of another. When applied to the expression
of genes, these graphs are called ‘gene regulatory networks’ [15, 25]. These and other networks became
important in ‘systems biology’, a holistic approach to biological systems that aims to understand how the
interactions between their components lead to emergent behaviors [3, 27]. Since the 1990s, large databases
of biological networks have been created, integrating visualizations with molecular data, ontologies and
references to the literature [24]. Eventually standardization became necessary, and a committee was formed
to develop Systems Biology Graphical Notation (SBGN) [30]. This is a system of visual representations of
biological networks to facilitate clear, consistent communication and the reuse of information. Over time,
SBGN has become a widely adopted standard for visualizing biological networks at varying levels of detail.
It encompasses three distinct yet complementary visual languages:

• Process Description (SBGN-PD) focuses on detailed biochemical reactions [42].
• Activity Flow (SBGN-AF) illustrates the flow through which various biochemical entities and ac-

tivities influence each other [38].
• Entity Relationship (SBGN-ER) highlights how entities affect each other’s actions and behaviors

[44].

The second author and his collaborators have recently attempted to develop a compositional framework for
SBGN-PD diagrams via the theory of ‘open process networks’ [13], motivated by the theory of open Petri
nets [8]. The current work is instead connected to SBGN-AF diagrams.

We study three kinds of morphisms between labeled graphs, which require increasing amounts of struc-
ture on the label set:

(1) ‘maps’ between L-labeled graphs for a set L. Here is an example taking L = N:

u1

v w u v w
u2

1
2 f 1 2

1

Here the edge labels simply get pulled back along a map of graphs. As explained in Section 2,
maps between set-labeled graphs can be useful for refining a simple model of a system to a more
complex model. The more complex model is the source of the map of L-labeled graphs; in the
example above we refined a model with one entity called u to one with two similar entities called
u1 and u2.

(2) ‘Kleisli morphisms’ between M-labeled graphs for a monoid M. Here is an example taking M = N
made into a monoid using addition:

u w u v w5 f 3 2

Here an edge can get mapped to a path of edges if its label is the sum of their labels. In Section 3
we argue that many important sets of labels in systems dynamics and systems biology are in fact
monoids. Section 4 explains how Kleisli morphisms can be used to find ‘motifs’: simple patterns
commonly which play important structural roles in many systems.

(3) ‘additive morphisms’ between finite C-labeled graphs whenever C is a commutative monoid. Here
is an example taking C = N made into a commutative monoid using addition:

u v w u v w

1
1
2

1

1

f 4 2

GRAPHS WITH POLARITIES 3

Here when several edges get mapped to the same edge, we sum their labels. In systems dynamics
and systems biology, most of the monoids of labels are commutative. Section 5 explains how
additive morphisms can be used to simplify a complex model of a system.

We also study ‘open’ labeled graphs, which are roughly labeled graphs with some vertices specified as
‘inputs’ or ‘outputs’. The advantage of these is that large labeled graphs can be build up out of small open
labeled graphs by a process of composition. We consider three variants of this theme:

(1) In Theorem 7.2, for any set L we construct a symmetric monoidal double category of open L-labeled
graphs and maps between these. This uses the theory of structured cospans [6, 7, 14].

(2) In Theorem 7.6, for any monoid M we construct a symmetric monoidal double category of open M-
labeled graphs and Kleisli morphisms between these. This pushes the theory of structured cospans
slightly beyond its usually stated level of generality.

(3) In Theorem 7.7, for any commutative monoid C we construct a symmetric monoidal double cate-
gory of open C-labeled finite graphs and additive morphisms between these. This seems to require
the theory of decorated cospans [7, 16, 17].

We also study feedback loops in graphs, and how new feedback loops can emerge when one composes
open graphs. To study these, in Section 8 we define the first homology monoid of a graph G with coefficients
in a commutative monoid C. When C is an abelian group this monoid reduces to the familiar homology
group with coefficients in C, which does not depend on the direction of the edges of G. When C is a monoid
without inverses, such as N with addition, the first homology detects directed loops in G. This is crucial for
the study of feedback, since an edge A → B indicates that A affects B, but not necessarily vice versa. We
carry out a detailed study of the first homology of G with coefficients in N, showing in Theorem 8.12 that it
is generated by homology classes of ‘simple loops’: that is, directed loops that do not cross themselves.

In Section 9 we study how directed loops emerge when we compose open graphs. For example, this
graph has no directed loops:

b

a d e
c g

h

but when we glue it to the following graph, which also has no directed loops:

b

e f i

g

h

by identifying the vertices called b, e, g and h, we obtain a graph with directed loops, one shown in boldface:

b

a d e f i

c g

h

In the case of undirected loops the phenomenon of ‘emergent loops’ is well understood by the van Kampen
theorem. For homology with coefficients in an abelian group the analogous phenomenon is well understood
using the Mayer–Vietoris exact sequence [22]. We prove some related theorems for directed loops and
homology with coefficients in N.

4 GRAPHS WITH POLARITIES

Acknowledgements. We thank Nathaniel Osgood for teaching us about causal loop diagrams and system
dynamics, and Olaf Wolkenhauer for suggesting the application of causal loop diagrams to Systems Biol-
ogy Graphical Notation – Activity Flow (SBGN-AF). We thank Ralf Köhl, Olaf Wolkenhauer, Clémence
Réda, Shailendra Gupta, and Rahul Bordoloi for valuable discussions on the applications of causal loop
diagrams to SBGN-AF. We thank Oscar Cunningham, Morgan Rogers and Zoltan Kocsis for dispelling our
hope that the first homology monoid of a directed graph is always free, and Tobias Fritz for explaining a
generalization of homology for commutative monoids. We thank David Egolf for suggesting the idea of a
monoid containing an element indicating that one vertex has a direct effect on another that we are deciding
to neglect. We thank Evan Patterson and Xiaoyan Li for discussions of Catcolab’s and AlgebraicJulia’s
treatments of these ideas, and Kevin Carlson and others for general help with category theory.

Notation. In this paper we use a sans-serif font like C for categories, boldface like B for bicategories or
2-categories, and blackboard bold like D for double categories. Thus, Cat denotes the category of small
categories while Cat denotes the 2-category of small categories. For double categories with names having
more than one letter, like Csp(X), only the first letter is in blackboard bold.

2. Set-labeled graphs

Although a graph captures the interconnection between a set of elements, it does not say anything about
the types of interconnection. We can do this using labeled graphs with edges labeled by elements of a set.

First, some preliminaries. For us, a graph G = (E,V, s, t) consists of a set of vertices V and a set of
edges E together with a source map s : E → V and a target map t : E → V . We define a map of graphs
f = (f0, f1) from a graph G = (E,V, s, t) to a graph G′ = (E′,V ′, s′, t) to be a pair of functions f0 : V → V ′

and f1 : E → E′ such that the following two diagrams commute:

E E′

V V ′

f1

s s′

f ′0

E E′

V V ′.

f1

t t′

f ′0

The collection of graphs and maps between them form a category, which we denote by Gph. The category
Gph is equivalent to the functor category SetG, where G is the category freely generated by two parallel
morphisms e ⇒ v. Since G � Gop we can also say Gph is equivalent to SetG

op
. Thus, Gph is a presheaf

topos and it enjoys all the privileges of such categories: it is complete (has all limits) and cocomplete (has
all colimits), cartesian closed, has a subobject classifier, etc. When we replace the category Set with the
category of finite sets FinSet, we obtain a category

FinGph ≃ FinSetG

called the category of finite graphs, whose objects are graphs with finitely many vertices and edges. This
category is still a topos, so it has finite limits, finite colimits, it is cartesian closed, and has a subobject
classifier.

Now we turn to the simplest sort of labeled graph: a graph whose edges are labeled by some fixed set.

Definition 2.1. Given a set L, we define a L-labeled graph (G, ℓ) to be a graph G = (E,V, s, t) equipped
with a labeling map ℓ : E → L. We call L the set of labels.

A map of labeled graphs is a map between their underlying graphs that preserves the labels of edges:

Definition 2.2. Given L-labeled graphs (G, ℓ) and (G′, ℓ′), define a map of L-labeled graphs to be a map
of graphs f : G → G′ that makes the following triangle commute:

E E′

L

f1

ℓ ℓ′

We can pull back an L-labeling along a map of graphs:

GRAPHS WITH POLARITIES 5

Lemma 2.3. Let L be a set and (G, ℓ) an L-labeled graph. For any map of graphs f : G′ → G, there
is a unique L-labeling of G′, called the pullback of ℓ along f and denoted f ∗ℓ, such that f is a map of
L-labeled graphs from (G′, f ∗ℓ) to (G, ℓ). The pullback is contravariantly functorial in the following sense:

(f ◦ g)∗ = g∗ ◦ f ∗, 1∗ = 1.

Proof. We are forced to take f ∗ℓ = ℓ ◦ f1, and this works. □

To see how this fact can be used in system dynamics or systems biology, consider this map of graphs:

egg sales

profits sales profits.

milk sales

f

We can think of the first graph as a more complicated model in which one vertex in the second model has
been differentiated into two. Now suppose we label the edges of the second graph by elements of L = {+,−}.
This graph has just one edge, and if increased sales leads to increased profits (all else being equal) we label
this edge with +. Then Lemma 2.3 says there is a unique way to label the edges of the first graph that lets
us lift the map f to a map of L-labeled graphs:

egg sales

profits sales profits.

milk sales

+

f +

+

The functoriality in Lemma 2.3 says that one can start with a model of a system as an L-labeled graph
and successively refine it by choosing graphs that map to the original graph, with the L-labelings being
automatically inherited all these more refined graphs in a consistent way. In system dynamics this and
related processes of model refinement are called ‘stratification’ [9].

In mathematical terms, there is a forgetful functor sending L-labeled graphs to their underlying graphs,
and Lemma 2.3 says this functor is a ‘discrete fibration’. To better understand this and other facts about
labeled graphs it can be useful to take a more sophisticated outlook. The reader less familiar with category
theory can skip the rest of this section. For an introduction to discrete fibrations see [32, Sec. 2.1].

First, note that a L-labeled graph can be seen as a graph over GL, the graph with only one vertex and an
edge for each element ℓ ∈ L. That is, an L-labeled graph is the same as graph G equipped with a map of
graphs p : G → GL. Similarly, a map of L-labeled graphs can be seen as a map of graphs over L, i.e., a map
of graphs f : G → G′ such that this triangle commutes:

G G′

GL

f

p p′

Thus, the category of L-labeled graphs and maps between them is isomorphic to the slice category Gph/GL.
This makes it easy to deduce the following facts from general principles:

Proposition 2.4. For any set L, we have the following:

(a) The category Gph/GL is a presheaf topos.
(b) The forgetful functor U : Gph/GL → Gph is a discrete fibration.
(c) The presheaf P : Gphop

→ Set associated to U is representable by GL.
(d) The category Gph/GL is equivalent to the category of elements

∫
P.

Proof. These follow from more general results. If we write Ĉ for the category of presheaves on a category
C, and choose a presheaf F ∈ Ĉ, then:

(a) The category Ĉ/F is a presheaf topos.
(b) The forgetful functor U : Ĉ/F → Ĉ is a discrete fibration.
(c) The functor P : Ĉop → Set associated to U is representable by F.
(d) The category Ĉ/F is equivalent to the category of elements

∫
P.

6 GRAPHS WITH POLARITIES

The proposition follows taking C = G and F = GL. These more general results are well-known, but here
we sketch them, with references:

(a) follows from the fact Ĉ/F ≃
∫̂

F, where
∫

F is the category of elements of F [33, Exercise III.8].
In our example of interest, one can check directly that the category of L-labeled graphs is equivalent to
the category of presheaves on a category with one object v, one object for each edge label ℓ ∈ L, and two
morphisms sℓ, tℓ : v→ ℓ for each ℓ.

(b) For any object d in a category D, to say that the forgetful functor U : D/d → D is a discrete fibration
means that given any object over d, say p : e→ d, and any morphism f : e′ → e in D, there exists a unique
morphism g in D/d such that U(g) = f . This is easily checked taking g as follows:

e′ e

d.

f

p◦ f p

(c) This holds because the fiber of U at any G ∈ Ĉ is of the form hom(G, F).
(d) From Grothendieck’s correspondence between discrete fibrations and presheaves [32, Sec. 2.1] we

have the following isomorphism of discrete fibrations∫
P Ĉ/F

Ĉ

�

and thus the category
∫
P is equivalent to Ĉ/F. □

The discrete fibration in Proposition 2.4 (b) implies that there is a functorial way to pull back L-labelings
along maps of graphs, as we have already seen. We can also push forward labelings along a map between
labeling sets. That is, given a map ϕ : L → L′, and an L-labeled graph (G, ℓ), we can define an L′-labeled
graph

ϕ∗(G, ℓ) := (G, ϕ ◦ ℓ).

This process is functorial:
(ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗, 1∗ = 1.

More formally, we have the following result.

Proposition 2.5. The following assignment

F : Set → Cat

L 7→ Gph/GL

(L
ϕ
−→ L′) 7→ (Gph/GL

ϕ∗
−→ Gph/GL′)

defines a functor.

Proposition 2.5 lets us define a single category of set-labeled graphs that allows for all possible choices
of label set L. This is simply the category of elements

∫
F of the functor F. Explicitly:

Proposition 2.6.
∫

F is the category where:
• an object is a pair (L, p : G → GL),
• a morphism from (L, p : G → GL) to (L′, p′ : G′ → G′L) is a pair (ϕ, f), where ϕ : L → L′ is a

function and f : G → G′ is a map of graphs such that this square commutes:

G G′

GL GL′ .

f

p p′

ϕ̃

where ϕ̃ : GL → GL′ maps each edge ℓ ∈ L of GL to the edge ϕ(ℓ) ∈ L′ of GL′ .

GRAPHS WITH POLARITIES 7

3. Monoid-labeled graphs

We now turn to graphs where the edges are labeled by elements of a monoid. We think of these monoid
elements as ‘polarities’: ways for the entity corresponding to one vertex to affect another. If a graph has
an edge from a vertex u to a vertex v labeled with a monoid element m, and an edge from v to a vertex w
labeled with a monoid element m′, we say that u has an indirect effect on w equal to m′m.

Here are some monoids that are useful for describing polarities:

Example 3.1. The terminal monoid is a monoid containing just one element. This is also known as the
trivial group. In the applications at hand we write the group operation as multiplication and call the one
element 1, so that 1 · 1 = 1. Thus, we call this monoid {1}. Any graph becomes a {1}-graph in a unique way,
by labeling each edge with 1, and this gives an isomorphism of categories

{1}Gph � Gph.

We can use a graph to describe causality in at least two distinct ways. Suppose v and w are vertices of a
graph.

(1) We can use the presence of an edge from v to w to indicate that the entity named by v has a direct
effect on the entity named by w, and the absence of an edge to indicate that v has no direct effect on
w. (Even if there is no edge from v to w, v may still have an indirect effect on w if there is path of
edges from v to w.)

(2) We can use the presence of an edge from v to w to indicate that v has a direct effect on w, and
the absence of an edge to indicate that v has has no currently known direct effect on w. This
interpretation is useful for situations where we start with a graph having no edges, and add an edge
each time we discover that one vertex has a direct effect on another.

We can also take at least three different attitudes to the presence of multiple edges from one vertex to
another:

(a) We can treat them as redundant, hence unnecessary, allowing us to simplify any graph so that it has
at most one edge from one vertex to another.

(b) We can treat them as indicating different ways in which one vertex directly affects another.
(c) We can use the number of edges from v to w to indicate the amount by which v affects w.

All these subtleties of interpretation can also arise for M-graphs where M is any other monoid. We will not
mention them each time, but in applications it can be important to clearly fix an interpretation.

Example 3.2. The most widely used monoid in this field is the abelian group Z/2. It is typical to write the
group operation as multiplication rather than addition, and call this group {+,−}:

· + −

+ + −

− − +

In the field called System Dynamics [46, Chap. 5], a graph with edges labeled by elements of {+,−} is
called a ‘causal loop diagram’. Here is a causal loop diagram serving as a simple model of students doing
homework:

sleep

effort quality of work

grades

+

−

+

+

−

The more effort a student puts into homework, the less sleep they get, so the edge from ‘effort’ to ‘sleep’ is
labeled with a −, and so on.

In biology, the simplest sort of regulatory network [2] is a graph with edges labeled by elements of
{+,−}. However, the notation is different. Instead of an edge labeled with +, an arrow A B indicates
that A ‘promotes’ or ‘stimulates’ B, while an arrow A B indicates that A ‘represses’ or ‘inhibits’ B. In
the official SBGN-AF terminology, A B means that A is a ‘positive influence’ on B, while A B
means that A has a ‘negative influence’ on B.

8 GRAPHS WITH POLARITIES

Example 3.3. Another important monoid of polarities is the multiplicative monoid of Z/3, which we can
write either as {1, 0,−1} or {+, 0,−}. Now the multiplication table is this:

· + 0 −

+ + 0 −

0 0 0 0

− − 0 +

This monoid contains the one in the previous example as a submonoid, but also a new element 0 that is
absorbing: 0 · x = x · 0 = 0 for all x. So, unlike {+,−}, this monoid {+, 0,−} is not a group.

There are at least three distinct interpretations of {+, 0,−}-graphs:
(1) We can use + to denote a positive effect, − to denote a negative effect, and 0 to denote an effect

whose value varies depending on the circumstances.
(2) We can use + to denote a positive effect, − to denote a negative effect, and 0 to denote an effect that

we deem negligible.
(3) We can use + to denote a positive effect, − to denote a negative effect, and 0 to denote an unknown

effect.
Our choice of interpretation affects how we interpret the absence of an edge from one vertex to another. We
discuss this in Example 3.4.

We believe that in SBGN-AF diagrams, this new element 0 is used to mean an ‘unknown influence’, and
and denoted with a diamond-headed arrow. Thus, A B means that A has an unknown influence on B.

Example 3.4. More generally, for any monoid M we can form a new monoid M ∪ {0} where 0 is a new
absorbing element. Thus, in M ∪ {0} the product of elements of M is defined as before, but m · 0 = 0 ·m = 0
for all m ∈ M, and 0 · 0 = 0. This new monoid contains M as a submonoid. As before, there are at least
three interpretations of the element 0:

(1) We can use 0 to denote an effect whose value varies depending on the circumstances. In this case
we can use the absence of an edge from a vertex v to a vertex w to indicate either:
(a) there is no direct effect of v on w, or
(b) the effect of v on w is unknown.

(2) We can use 0 to denote an effect that we deem negligible. In this case we can again use either
interpretation (a) or (b) of the absence of an edge.

(3) We can use 0 to denote an unknown effect. In this case we can use interpretation (a) of the absence
of an edge, but interpretation (b) is awkward, because then the absence of an edge means the same
thing as an edge labeled by 0.

Example 3.5. For any monoid M we can also form a new monoid M∪{I}where I is a new identity element.
Thus, in M ∪ {I} the product of M is defined as before, but m · I = I · m = m for all m ∈ M, and I · I = I.
When we apply this construction to {+,−} we obtain a monoid {+, I,−} with the following multiplication
table:

· I + −

I I + −

+ + + −

− − − +

We believe that in SBGN-AF, this new element I has the meaning of a ‘necessary stimulation’, and it is
denoted with a barred arrow, so A B means that A is necessary for B.

If we adjoin an absorbing element to this monoid {I,+,−}, we obtain a monoid {I,+, 0,−} that can handle
a large fraction of SBGN-AF diagrams. But in these diagrams:

• instead of an edge labeled I, we write for ‘necessary stimulation’.
• instead of an edge labeled +, we write for ‘positive influence’.
• Instead of an edge labeled 0, we write for ‘unknown influence’.
• Instead of an edge labeled −, we write for ‘negative influence’.

We can also obtain this monoid {I,+, 0,−} by adjoining a new identity element to the monoid {+, 0,−}
discussed in Example 3.3. Either way, the multiplication table is as follows:

GRAPHS WITH POLARITIES 9

· I + 0 −

I I + 0 −

+ + + 0 −

0 0 0 0 0

− − − 0 +

Example 3.6. The multiplicative group of the reals, (R − {0}, ·, 1), consists of all real numbers except zero,
with multiplication as its monoid operation. The monoid {+,−} of Example 3.2 gives purely qualitative
information about whether an effect is positive or negative. We can label the edges of a graph with elements
of R − {0} to give quantitative information about how much of a positive or negative direct effect one vertex
has on another.

Example 3.7. The multiplicative monoid of the reals, (R, ·, 1), consists of all real numbers with multipli-
cation as its monoid operation. This is obtained from the multiplicative group of the reals by adjoining an
absorbing element as in Example 3.4.

Example 3.8. The monoid ([0,∞),+, 0) consists of nonnegataive real numbers with addition as its monoid
operation. We can use this monoid to describe delayed effects: an edge labeled with a real number t ≥ 0
can indicate that one vertex affects another after a delay of time t.

Example 3.9. The monoid (N,+, 0) consists of all natural numbers with addition as its monoid operation.
We can use this monoid to describe delayed effects in discrete-time systems, using an edge labeled with a
natural number n to indicate that one vertex affects another after a delay of n time steps.

Example 3.10. Products of monoids are also useful: for example, to describe both time delays and whether
an effect is positive or negative, we can use the monoid ([0,∞),+, 0) × {+,−}.

Example 3.11. All the above monoids above are commutative, and indeed commutative monoids are by far
the most commonly used for polarities. We discuss special features of the commutative case in Sections 5
and 8. However, graphs with edges labeled by not-necessarily-commutative monoids do show up naturally
in some contexts. For example, in computer science [20, Sec. 2.1], a semiautomaton consists of a set V of
states, a set A of inputs, and a map α : A → VV that describes how each input acts on each state to give a
new state. Let M be the monoid of maps from V to itself generated by all the maps α(a) for a ∈ A. Let G
be the graph where:

• The set of vertices is V .
• The set of edges is E = A × V .
• The source map is given by

s : E → V

(a, v) 7→ v.

• The target map is given by

t : E → V

(a, v) 7→ α(a)(v).

Since the monoid of maps M ⊆ VV is generated by elements α(a) for a ∈ A, there is an M-labeling
of G given by

ℓ(a, v) = α(a).

In short, a semi-automaton gives an monoid-labeled graph where the vertices represent states and
for each input a mapping a state v to a state w there is an edge labeled by the monoid element
α(a) ∈ M. Note however that it also give an set-labeled graph with the same vertices, where for
each input a mapping a state v to a state w there is an edge labeled by a ∈ A.

Given a monoid (M, ·, 1), we define an M-labeled graph and a map of M-labeled graphs just as when M
is a mere set (see Definitions 2.1 and 2.2). One advantage of using graphs with labelings ℓ : E → M where
M is a monoid is that for any path of edges in G

v0
e1
−→ v1

e2
−→ · · ·

em−1
−−−→ vm−1

em
−−→ vm

10 GRAPHS WITH POLARITIES

we can form the product ℓ(em) · · · ℓ(e1), and use this to describe how the vertex v0 indirectly affects the
vertex vn.

To formalize this, recall that there are adjoint functors

Gph Cat.

Free

Und

⊥

The functor Und: Cat → Gph sends any category C to its underlying graph, whose vertices are objects
of C and whose edges are morphisms. This has a left adjoint Free : Gph → Cat sending each graph
G = (E,V, s, t) to the category Free(G) where:

• an object is a vertex v ∈ V .
• a morphism from v to w is a path in G:

v = v0
e1
−→ v1

e2
−→ · · ·

em−1
−−−→ vm−1

em
−−→ vm = w

where m ≥ 0.
• composing paths

v0
e1
−→ · · ·

em
−−→ vm

and
vm

em+1
−−−→ · · ·

em+n
−−−→ vm+n

gives the path
v0

e1
−→ · · ·

em
−−→ vm

em+1
−−−→ · · ·

em+n
−−−→ vm+n

• the identity 1 : v→ v is the path of length 0 starting and ending at v.
Suppose M is a monoid. Our next goal is to show that when (G, ℓ) is an M-labeled graph, Free(G)

becomes a kind of M-labeled category—usually called an ‘M-graded’ category. Just as M-labeled graphs
are conveniently treated as graphs over GM , we can define an M-graded category to be a category C over
BM, the one-object category with one morphism for each element of M, with composition defined to be
multiplication in M.

Definition 3.12. Let M be a monoid. The category of M-graded categories is the slice category Cat/BM.

Thus, an M-graded category p : C → BM is a category C for which each morphism is mapped to an
element p(f) of M called its grade in such a way that

p(f g) = p(f)p(g)

for any pair of composable morphisms f and g, and

p(1c) = 1 ∈ M

for each c ∈ C. A map of M-graded categories, say F from p : C→ BM to p′ : C′ → BM′, works out to be
a functor F : C→ C′ with the property that

p′(F(f)) = p(f)

for every morphism in C. In other words, F preserves the grades of morphisms.
This category of monoid-graded categories enjoys certain nice properties analogous to the category of

set-labeled graphs (see Proposition 2.4).

Proposition 3.13. For any monoid M, we have the following:
(a) The category Cat/BM is locally finitely presentable, and thus complete and cocomplete.
(b) The forgetful functor Ū : Cat/BM → Cat is a discrete fibration.
(c) The presheaf P̄ : Catop

→ Set associated to F is representable by BM.
(d) The category Cat/BM is same as the category of elements

∫
P̄.

Proof. For (a), recall that a category is locally finitely presentable precisely when it is the category of
models for a finite limits sketch [1]. In the case of Cat/BM, this follows because we can define a category
over BM as having a set Ob of objects, for each ℓ ∈ M a set Morℓ of ℓ-labeled morphisms, source and target
maps sℓ, tℓ : Morℓ → Ob, an identity-assigning map id : Ob → Mor1, and composition maps defined on
pullbacks

◦ℓ,ℓ′ : Morℓ sℓ×tℓ Morℓ′ → Morℓ′ℓ

GRAPHS WITH POLARITIES 11

satisfying associativity and the unit laws. Every locally finitely presentable category is complete and co-
complete [1].

Parts (b), (c) and (d) follow exactly the same way as in the proofs of the corresponding parts of Proposi-
tion 2.4. □

Natural transformations between maps of M-graded categories obey an interesting law. Suppose (M, ·, 1)
is a monoid, p : C → BM, p′ : C′ → BM are a pair of M-graded categories, and F, F′ : C → C′ are a pair
of maps of M-graded categories. Then, for any natural transformation η : Ob(C) → Mor(C′) from F to F′,
we have

p(γ)p′
(
η(a)
)
= p′
(
η(b)
)
p(γ)

for all morphisms f : a→ b in C.

4. Motifs in monoid-labeled graphs

Small monoid-labeled graphs are often called ‘motifs’ because, like motifs in a piece of music, they
show up repeatedly in a meaningful way in a larger context [4]. For example take M = {+,−}. Let (G, ℓ) be
this M-labeled graph:

X +

Let (H,m) be this larger M-labeled graph:

A B D E

C F

−

+ +

− +

−

−

− +

+

+

In a sense, there is a copy of (G, ℓ) hiding in (H,m). Here it is:

A B

C

−

+

−

Here the entity A affects itself in a positive way, but indirectly, through B and C. There is not a map of
M-labeled graphs from (G, ℓ) to (H,m). Instead, there is a functor from the free M-graded category on
(G, ℓ) to the free M-graded category on (H,m), say

F : FreeM(G, ℓ)→ FreeM(H,m).

This functor sends X to A and it sends the edge from X to itself, which is a morphism in FreeM(G, ℓ), to
the path from A to B to C to A, which is a morphism in FreeM(H,m). Moreover F is a map of M-graded
categories. This is the sense in which the motif (G, ℓ) appears in the larger M-labeled graph (H,m).

To make this precise we need to understand the free M-graded category on an M-labeled graph.

Lemma 4.1. Let M be a monoid. The forgetful functor sending M-labeled categories to their underlying
M-labeled graphs,

UndM : Cat/BM → Gph/GM ,

has a left adjoint
FreeM : Gph/GM → Cat/BM.

Proof. We define FreeM as follows. For any M-labeled graph (G, ℓ) we define FreeM(G, ℓ) to have Free(G)
as its underlying category, with the labeling of any morphism

v0
e1
−→ v1

e2
−→ · · ·

en−1
−−−→ vn−1

en
−→ vn

in Free(G) being the product ℓ(en) · · · ℓ(e1) ∈ M. Recall that a map of L-labeled graphs f : (G, ℓ)→ (G′, ℓ′)
is a map f0 sending vertices to vertices and a map f1 sending edges to edges, preserving the labeling. Thus
we define FreeM(f) to equal f0 on objects of FreeM(G, ℓ) and to send any morphism

v0
e1
−→ v1

e2
−→ · · ·

en−1
−−−→ vn−1

en
−→ vn

12 GRAPHS WITH POLARITIES

to

f0(v0)
f1(e1)
−−−−→ f0(v1)

f1(e2)
−−−−→ · · ·

f1(en−1)
−−−−−→ f0(vn−1)

f1(en)
−−−−→ f0(vn).

One can check that FreeM is left adjoint to UndM . □

Definition 4.2. For any monoid M, the Kleisli category of M-labeled graphs, K(Gph/GM) has:

• as objects, M-labeled graphs,
• as morphisms from an M-labeled graph (G, ℓ) to an M-labeled graph (G′, ℓ′), maps of M-graded

categories
f : FreeM(G, ℓ)→ FreeM(G′, ℓ′),

• as composition, the usual composition of maps of M-graded categories,
• as identity morphism, the usual identity maps of M-graded categories.

We call a morphism in this category a Kleisli morphism between M-labeled graphs.

The concept of Kleisli category shows up whenever we have a pair of adjoint functors. Usually the
Kleisli category is described in terms of a monad, which here would be the monad UndM ◦ FreeM . There is
a bijection between morphisms

FreeM(G, ℓ)→ FreeM(G′, ℓ′)

and morphisms
(G, ℓ)→ (UndM ◦ FreeM)(G′, ℓ′).

It is common to describe composition of morphisms of the former sort indirectly, in terms of morphisms of
the latter sort. However, this is not needed for our purposes.

Aduddell et al. [2] introduced the Kleisli category of {+,−}-labeled graphs to study motifs in biochemical
regulatory networks.

Example 4.3. Below we list some {+,−}-labeled graphs with special names, which serve as motifs in the
work of Aduddell et al. [2] and Tyson et al. [48] :

• positve autoregulation and negative autoregulation:

v

+

v.

−

• positive stimulation and negative stimulation:

v w
+

w v.
−

• the positive feedback loop, negative feedback loop and double-negative feedback loop:

v w
+

+

v w
+

−

v w.
−

−

• the coherent feedforward loop and incoherent feedforward loop:

v w
+

+

v w.
+

−

• three kinds of branches:

u

v w

+ +
u

v w

+ −
u

v w

− −

• three kinds of logic gates:

v w

u
+ +

v w

u
+ −

v w

u
− −

GRAPHS WITH POLARITIES 13

A third feedforward loop not mentioned by the above authors could be called the double-negative feedfor-
ward loop:

v w
−

−

Starting from the fundamental motifs listed above, one can build other important ones, such as the overlap-
ping feedforward loops formed by combining feedforward loops with branches or logic gates:

v w

u
+

+

+

+

v w

u
+

+

+

−

v w

u
−

+

+

−

u

v w

+ +

−

+

u

v w

+ −

−

+

u

v w

− −

−

+

For a monoid M, denote the Kleisli category of M-labeled graphs (see Definition 4.2) by K(Gph/GM).
Given a homomorphism ϕ : M → M′ of monoids, there is a functor

ϕ∗ : K(Gph/GM) → K(Gph/GM′)

(G, ℓ) 7→ (G, ϕ ◦ ℓ)(
F : FreeM(G, ℓ1)→ FreeM(H, ℓ2)

)
7→
(
F : FreeM′ (G, ϕ ◦ ℓ1)→ FreeM′ (H, ϕ ◦ ℓ2)

)
which allows us to change labelings on the edges functorially, as we observe below:

Proposition 4.4. The following assignment

Fm : Mon → Cat

M 7→ K(Gph/GM)

(M
ϕ
−→ M′) 7→ (K(Gph/GM)

ϕ∗
−→ K(Gph/GM′)

defines a functor, where Mon is the category of monoids.

Proof. This follows because for any composable pair of monoid homomorphisms M
ϕ
−→ M′

ϕ′

−→ M′′ we
have

ϕ′∗(G, ϕ ◦ ℓ) = (G, ϕ′ ◦ ϕ ◦ ℓ). □

Applying the Grothendieck construction to the functor in Proposition 4.4, we obtain the category of
monoid-labeled graphs and Kleisli morphisms

∫
Fm.

Proposition 4.5.
∫

Fm is the category where:

• an object is a pair (M, p : G → GM),
• a morphism from (M, p : G → GM) to (M′, p′ : G′ → GM′) is a pair (ϕ, θ), where ϕ : M → M′

is a homomorphism of monoids and θ : Free(G) → Free(G′) is a functor such that this square
commutes:

Free(G) Free(G′)

BM BM′

θ

p̃ p̃′

ϕ̃

where
– the functor ϕ̃ : BM → BM′ := B(ϕ), where B : Mon → Cat is the functor that takes a monoid

to its associated 1-object category,

14 GRAPHS WITH POLARITIES

– p̃ : Free(G)→ BM is induced from from p : G → GM , which takes any morphism

v0
e1
−→ v1

e2
−→ · · ·

em−1
−−−→ vm−1

em
−−→ vm

in Free(G) to the unique morphism in BM associated to

ℓ(em) · · · ℓ(e1) ∈ M,

– p̃′ : Free(G′)→ BM′ is defined similarly to p̃.

5. Commutative monoid-labeled graphs

Now we turn to graphs with edges labeled by elements of a commutative monoid. This allows for a
new concept of morphism between labeled graphs, and permits a deeper study of feedback loops. We use
additive notation for the operation in a commutative monoid.

Given a commutative monoid C, we define C-labeled graphs and maps of C-labeled graphs just as we
do as when C is a mere set (Definitions 2.1 and 2.2). However, there is another useful concept of morphism
between finite C-labeled graphs, meaning those with finitely many edges and vertices. (In applications,
C-labeled graphs are usually finite.)

Definition 5.1. Let C be a commutative monoid, and let (G, ℓ) = (E,V, s, t, ℓ) and (G′, ℓ′) = (E′,V ′, s′, t′, ℓ′)
be two finite C-labeled graphs. We define an additive morphism from (G, ℓ) to (G′, ℓ′) to be a map of
graphs f : G → G′ such that the following condition holds for all e′ ∈ E′:

(1) ℓ′(e′) =
∑

{e∈E : f1(e)=e′}

ℓ(e).

The collection of finite C-labeled graphs and their additive morphisms forms a category whose composition
law is induced from the composition law in the category FinGph. We denote this category by CFinGph.

Equation (1) says that each edge e′ of G′ is labeled by the sum of the labels of edges of G that map to
e′. We restrict ourselves to commutative monoids to make sure that the sum is independent of the order of
summation, and to finite graphs to make sure the sum is a finite one. Furthermore, observe that ℓ(e′) = 0 if
there is no e ∈ E such that f (e) = e′, since any sum over the empty set vanishes.

We can push forward an C-labeling along any morphism of finite graphs. More precisely, we have the
following:

Lemma 5.2. Let C be a commutative monoid and (G, ℓ) a finite C-labeled graph. Then, for any map of
finite graphs f : G → G′, there is a unique C-labeling f∗ℓ of G′, called the pushforward of ℓ along f , such
that f is an additive morphism of C-labeled graphs from (G, ℓ) to (G′, f∗ℓ). This pushforward is covariantly
functorial in the following sense:

(f ◦ g)∗ = f∗ ◦ g∗, 1∗ = 1.

Proof. By the definition of additive morphism we are forced to take

(f∗ℓ)(e′) :=
∑

{e∈E : f1(e)=e′}

ℓ(e)

for all edges e′ of G′, and this choice works. □

To see how this fact can be used in system dynamics or systems biology, suppose that each hour a coffee
shop is open it sells $150 of coffee and $25 of tea. We can model this with an (R,+, 0)-labeled graph:

hours open sales.

150

25

We can simplify this model by mapping its underlying graph to a simpler graph:

hours open sales hours open sales.
f

GRAPHS WITH POLARITIES 15

Lemma 5.2 says there is a unique way to label the edges of the second graph that lets us lift the map f to an
additive morphism of (R,+, 0)-labeled graphs:

hours open sales hours open sales.

150

25

f 175

Just as Lemma 2.3 says that for any set L the forgetful functor from L-labeled graphs to graphs is a
discrete fibration, Lemma 5.2 says that for any commutative monoid C the forgetful functor from C-labeled
finite graphs to finite graphs is a discrete opfibration.

Proposition 5.3. For any commutative monoid C, we have the following:
(a) The forgetful functor U : CFinGph→ FinGph is a discrete opfibration.
(b) The category of elements

∫
Q of the covariant functor Q : FinGph→ Set associated to U is equiv-

alent to the category CFinGph.

Proof. (a) was proved in Lemma 5.2. (b) follows from general principles, but one can see it concretely as
follows. First note that the functor Q : FinGph → Set associated to the discrete fibration U : CFinGph →
FinGph maps any finite graph to its set of C-labelings, and any map of finite graphs f : G → G′ to the map
sending C-labelings of G to C-labelings of G′ given by Equation (1). Thus, the category of elements of Q
is equivalent to CFinGph. □

Proposition 5.3 (a) implies that there is a functorial way to push forward C-labelings along maps of
graphs. We can also push forward labelings along a homomorphism of commutative monoids. Given a
homomorphism ϕ : C → C′ of commutative monoid and an C-labeled finite graph (G, ℓ), we can define an
C′-labeled graph

(2) ϕ∗(G, ℓ) = (G, ϕ ◦ ℓ).

Proposition 5.4. The following assignment

Fcm : CommMon → Cat

C 7→ CFinGph

(C
ϕ
−→ C′) 7→ (CFinGph

ϕ∗
−→ C′FinGph)

defines a functor, where CommMon is the category of commutative monoids.

The functors ϕ∗ have many practical applications:

Example 5.5. Every commutative monoid C has a unique homomorphism ϕ : C → 1 where {1} is the
terminal monoid discussed in Example 3.1. The resulting functor

ϕ∗ : CFinGph→ {1}FinGph � Gph

takes any C-labeled finite graph and discards the labeling, giving a finite graph. This can be used to discard
information about how one vertex directly affects another and merely retain the fact that it does.

Example 5.6. There is a homomorphism ϕ : R − {0} → {+,−} from the multiplicative group of the reals
(see Example 3.6) to the group {+,−} (see Example 3.2) sending all positive numbers to + and all negative
numbers to −. The resulting functor ϕ∗ turns quantitative information about how much one vertex directly
affects another into purely qualitative information.

Example 5.7. There is a homomorphism ϕ : R → {+, 0,−} from the multiplicative monoid of the reals
(see Example 3.7) to the monoid {+, 0,−} (see Example 3.3) sending all positive numbers to +, all negative
numbers to −, and 0 to 0. The resulting functor ϕ∗ again turns quantitative information into qualitative
information.

Example 5.8. The homomorphisms in Examples 5.5–5.7 all have right inverses. For example, there is a
homomorphism ψ : {+, 0,−} → R sending + to 1, − to −1 and 0 to 0, and this has

ϕ ◦ ψ = 1.

The functor ψ∗ can be used to convert qualititative information about how one vertex directly affects another
into quantitative information in a simple, default manner. Of course this should be taken with a grain of

16 GRAPHS WITH POLARITIES

salt: since ψ ◦ ϕ , 1, quantitative information that has been converted into qualitative information cannot
be restored.

Applying the Grothendieck construction to the functor in Proposition 5.4 we obtain the category of
commutative monoid-labeled graphs

∫
Fcm.

Proposition 5.9.
∫

Fcm is equivalent to the category where:

• an object is a triple (C,G, ℓ) where C is a commutative monoid and (G, ℓ) is an C-labeled graph;
• a morphism from (C,G, ℓ) to (C′,G′, ℓ′) is a pair (ϕ, f), where ϕ : C → C′ is a homomorphism

of commutative monoids and f : G → G′ is a map of finite graphs such f∗(ϕ∗ℓ) = ℓ′, where f∗ is
defined in Lemma 5.2 and ϕ∗ is defined in Equation (2).

6. Rig-labeled graphs

We have seen that passing from set-labeled graphs (Section 2) to monoid-labeled graphs (Section 3)
lets us study of how one entity affects another indirectly through a path of edges, and gives a general
way to analyze motifs (Section 4). When the labeling monoid is commutative, we can also define ‘additive
morphisms’ between finite labeled graphs, which can be used to describe ways of simplifying labeled graphs
(Section 5). In the commutative case we can also study feedback loops using homology theory (Section 8).

Given all this, it is mathematically tempting to study graphs whose edges are labeled by elements of
a rig. A rig is a set R with the structure of both a commutative monoid (R,+, 0) and a monoid (R, ·, 1),
obeying

r · (s + t) = r · s + r · t, (r + s) · t = r · t + s · t

0 · r = 0 = r · 0

for all r, s, t ∈ R. It has this name because it is a ‘ring without negatives’, or more precisely a ring that may
not have negatives. The classic example is N with its usual addition and multiplication.

Despite the mathematically natural quality of rigs, their use of rig elements as polarities seems new and
is somewhat speculative. What is the point of having two operations on the set of labels?

Example 6.1. The initial object in the category of rigs isNwith its usual addition and multiplication. Given
an N-labeled graph, we can interpret an edge labeled by n ∈ N

v
n
−→ w

as saying there are n ways for v to directly affect w. Given a path in an N-labeled graph, say

v0
n1
−→ v1

n2
−→ v2

n3
−→ · · ·

nk
−→ vk

we can argue that there are n1 · · · nk ways for v0 to affect vk. This uses multiplication in the rig N. Note also
that using multiplication as the monoid operation we have a Kleisli morphism (Definition 4.2) from

v0
n1···nk
−−−−→ vk

to
v0

n1
−→ v1

n2
−→ v2

n3
−→ · · ·

nk
−→ vk.

On the other hand, we can use addition to define additive morphisms (Definition 5.1). Then there is an
additive morphism from

v w

n1

n2

n3

to

v w.
n1+n2+n3

This is consistent with the idea that there are n1 + n2 + n3 ways for v to affect w in the first N-labeled graph,
and that the second N-labeled graph presents this information in a simplified manner.

Example 6.2. The boolean rig B = {F,T } has ‘or’ as addition, ‘and’ as multiplication, F as 0, and T as 1.
Equivalently, we can take B = {0, 1} with the following addition and multiplication:

GRAPHS WITH POLARITIES 17

+ 0 1

0 0 1

1 1 1

· 0 1

0 0 0

1 0 1

We can use:
• the absence of an edge from v to w to mean that there is no knowledge of whether v directly affects

w,
• an edge labeled by 0 from v to w to indicate the known absence of a direct effect of some specific

sort of v on w,
• an edge labeled by 1 from v to w to indicate that there is known presence of a direct effect of some

specific sort of v on w.
For example,

v w
0

1

means it is known that v does not affect w in one way, but that it does affect it in some other way. We can
simplify this using an additive morphism to

v w.1

Example 6.3. We can generalize Example 6.2 as follows. A quantale is defined to be a poset Q with least
upper bounds of arbitrary subsets, equipped with a multiplication · : Q × Q → Q that preserves least upper
bounds in each argument. A quantale is unital if it has a unit 1 for the multiplication. Any unital quantale
becomes a rig where the addition defined to be the binary join ∨ : Q × Q→ Q.

The boolean rig B is an example of a unital quantale, but there are many others. For example, Bn is a
unitary quantale that allows us to generalize Example 6.2 to a situation where there are n researchers, each
with their own research on whether one vertex affects another. Master has carried out a detailed study of
networks using quantale theory [35, 36], which overlaps in interesting ways with our work here. Instead
of considering an arbitrary graph with edges labeled by elements of a rig, she considers a set of vertices V
together with a map ℓ : V × V → Q for some quantale Q. We can can think of this as a Q-labeled complete
directed graph. In this approach the absence of an effect of v ∈ V on w ∈ V is indicated, not by the absence
of an edge from v to w, but by setting ℓ(v,w) = 0, where 0 ∈ Q is the bottom element (the least upper bound
of the empty set).

We have seen that the multiplicative monoid of Z/3 is useful for describing positive and negative effects
as well as the absence of an effect (Example 3.3). While Z/3 becomes a ring with its usual addition,
this is problematic in the applications we are considering because −1 + 1 = 0, suggesting that a positive
effect necessarily cancels a negative effect. To get around this we can introduce a new element, i, for
‘indeterminate’, and set −1 + 1 = i.

Example 6.4. There is a 4-element commutative rig S = {1, 0,−1, i} with addition and multiplication given
as follows:

+ 1 0 −1 i

1 1 1 i i

0 1 0 −1 i

−1 i −1 −1 i

i i i i i

· 1 0 −1 i

1 1 0 −1 i

0 0 0 0 0

−1 −1 0 1 i

i i 0 i i

We can use 1 to indicate a positive effect, −1 to indicate a negative effect, 0 to indicate the absence of an
effect, and i to indicate an indeterminate effect: one that could be positive, negative or absent. The addition
and multiplication rules in this rig capture the following intuitions:

• the sum of positive effects is positive, while the sum of negative effects is negative,
• the sum of a positive and a negative effect is indeterminate,
• the product of positive effects is positive, as is the product of negative effects,
• the product of a positive and a negative effect is negative,

18 GRAPHS WITH POLARITIES

• any operation applied to an indeterminate effect produces an indeterminate effect, except for mul-
tiplication by 0.

To check that S really is a rig, we can use a construction of Golan [21, Ex. 1.10]. For any monoid M, its
power set PM becomes a rig with union as addition and with multiplication defined by

X · Y = {xy | x ∈ X, y ∈ Y}

for X,Y ∈ PM. The rig S can then be seen as P(Z/2) using the following identifications, where we write
the group Z/2 multiplicatively as {+,−} as in Example 3.2:

0 = {}, 1 = {+}, −1 = {−}, i = {+,−}.

Example 6.5. We can generalize Example 6.4 as follows. For any monoid M and any commutative unital
quantale Q, the set QM becomes a rig where addition is defined pointwise:

(f + g)(x) = f (x) ∨ g(x), x ∈ M,

where ∨ stands for the greatest lower bound, and multiplication is defined by a kind of convolution:

(f · g)(x) =
∨

{y,z∈M | x=yz}

f (y) · g(z), x ∈ M.

It is interesting to apply this construction to any quantale Q, thought of as describing ‘generalized truth
values’, and any monoid M from Examples 3.1–3.11. Example 6.4 arises from taking Q = B and M = Z/2.

Finally, there is the obvious example:

Example 6.6. The ring R with its usual addition and multiplication can be used to describe effects in a
quantitative rather than purely qualitative way.

7. Open labeled graphs

Experience has shown that ‘open’ systems—systems that can interact with their environments—are well
modeled using cospans [17]. A cospan in some category A is a diagram of this form:

A

X

B

i o

We call X the apex, A and B the feet, and i and o the legs of the cospan. The apex describes the system
itself. The feet describe ‘interfaces’ through which the system can interact with the outside world. The
legs describe how the interfaces are included in the system. If the category A has finite colimits, we can
compose cospans using pushouts and tensor them using coproducts. Composition describes the operation
of attaching two open systems together in series by identifying one interface of the first with one of the
second. Tensoring describes setting open systems side by side, in parallel. Via these operations we obtain
a symmetric monoidal double category with cospans in A as its horizontal 1-cells. Symmetric monoidal
double categories take a while to get used to, but they nicely capture many of the operations available here.

However, we often want the systems to have more structure than their interfaces. We can sometimes
model this using the theory of structured cospans. Here we start with a functor F : A→ X, typically the left
adjoint of some functor R : X→ A that forgets extra structure possessed by objects of X but not by those of
A. Then a F-structured cospan is a diagram in X of the form:

F(A)

X

F(B).

i o

When A and B have finite colimits and F preserves them, there is a symmetric monoidal double category
where the horizontal 1-morphisms are F-structured cospans [6, 7, 14, 41].

One of the simplest examples of this theory involves open L-labeled graphs for some set L. For this we
use the adjoint functors

Set Gph/GL.

disc

vert

⊥

GRAPHS WITH POLARITIES 19

where

• disc : Set→ Gph/GL takes a set S to the unique L-labeled graph with vertex set S and no edges;
• vert : Gph/GL → Set takes an L-labeled graph to its set of vertices.

Definition 7.1. Given a set L, an open L-labeled graph is a diagram in Gph/GL of the form

disc(A)

X

disc(B)

i o

for some sets A and B. We call this an open L-labeled graph from A to B.

For example, here is an open L-labeled graph with L = {+,−}:

•

•

•

•

•

+

−

+

+

− −

A BX

A and B are sets, which we can think of as graphs with no edges using the functor disc. The purple arrows
show how disc(A) and disc(B) are mapped to the L-graph X drawn in black.

The main point of open L-labeled graphs is that we can compose them to form bigger ones. To do this,
we take an open L-labeled graph from A to B, and one from B to C, and create one from A to C by taking a
pushout. This is formalized in the following already known result.

Theorem 7.2. For any set L, there is a symmetric monoidal double category of open L-labeled graphs,
Open(Gph/GL), in which

• an object is a set,
• a vertical 1-morphism from A to B is a function f : A→ B,
• a horizontal 1-cell from A to B is an open L-labeled graph from A to B:

disc(A) X disc(B),
i o

• a 2-morphism is a map of open L-labeled graphs, that is, a commutative diagram in Gph/GL of
the form

disc(A) X disc(B)

disc(A′) X′ disc(B′).

i o

i′ o′

disc(f) α disc(g)

Vertical composition is done using composition in Set, while horizontal composition is done using pushouts
in Gph/GL. The tensor product of two open L-labeled graphs is

X X′ X + X′

⊗ =

disc(A) disc(B) disc(A′) disc(B′) disc(A + A′) disc(B + B′)

i o i′ o′ i+i′ o+o′

20 GRAPHS WITH POLARITIES

where i + i′ and o + o′ are defined using the fact that disc preserves binary coproducts, and the tensor
product of two 2-morphisms is given by:

disc(A1) disc(B1)X1

disc(A2) disc(B2)X2

disc(A′1) disc(B′1)X′1

disc(A′2) disc(B′2)X′2

⊗

disc(A1 + A′1) disc(B1 + B′1)X1 + X′1

disc(A2 + A′2) disc(B2 + B′2).X2 + X′2

=

o1

disc(f) disc(g)α

i1

i2 o2

o′1

disc(f ′) disc(g′)α′

i′1

i′2 o′2

o1 + o′1

disc(f + f ′) disc(g + g′)α + α′

i1 + i′1

i2 + i′2 o2 + o′2

Proof. The categories Set and Gph/GL have finite colimits (see Proposition 2.4(a)) and disc : Set →
Gph/GL preserves them, since it is a left adjoint. The theorem thus follows from the theory of structured
cospans: see [6, Sec. 6.1] and [7, Sec. 6.2] for two different proofs. Using the same assumptions, Theo-
rem 2.3 of [41] yields a stronger result: Open(Gph/GL) is a cocartesian equipment, and thus a cocartesian
double category. □

If M is a monoid we can define open M-labeled graphs as in Definition 7.1, not using the monoid
structure, only the underlying set of M. However, we have the extra ability to convert any open M-labeled
graph into an ‘open M-graded category’, which we now define. First, note that the categories of sets and
M-labeled categories are related by a pair of adjoint functors

Set Cat/BM.

Disc

Vert

⊥

where

• Disc : Set → Cat/BM takes a set S to the unique M-graded category with object set S and only
identity morphisms;
• Vert : Cat/BM → Set takes an M-graded category to its set of objects.

We can apply the theory of structured cospans to the left adjoint Disc, as follows.

Definition 7.3. Given a monoid M, an open M-graded category is a diagram in Cat/BM of the form

Disc(A)

X

Disc(B)

i o

for some sets A and B. We call this an open M-graded category from A to B.

Theorem 7.4. For any monoid M, there is a symmetric monoidal double category of open M-labeled
categories, Open(Cat/BM), in which

• an object is a set,
• a vertical 1-morphism from A to B is a function f : A→ B,
• a horizontal 1-cell from A to B is an open M-graded category from A to B:

Disc(A) X Disc(B),
i o

GRAPHS WITH POLARITIES 21

• a 2-morphism is a map of open M-graded categories, that is, a commutative diagram in Cat/BM
of the form

Disc(A) X Disc(B)

Disc(A′) X′ Disc(B′).

i o

i′ o′

Disc(f) α Disc(g)

Vertical composition is done using composition in Set, while horizontal composition is done using pushouts
in Cat/BM. The tensor product of two horizontal 1-cells is

X X′ X + X′

⊗ =

Disc(A) Disc(B) Disc(A′) Disc(B′) Disc(A + A′) Disc(B + B′)

i o i′ o′ i+i′ o+o′

where i + i′ and o + o′ are defined using the fact that Disc preserves binary coproducts, and the tensor
product of two 2-morphisms is given by:

Disc(A1) Disc(B1)X1

Disc(A2) Disc(B2)X2

Disc(A′1) Disc(B′1)X′1

Disc(A′2) Disc(B′2)X′2

⊗

Disc(A1 + A′1) Disc(B1 + B′1)X1 + X′1

Disc(A2 + A′2) Disc(B2 + B′2).X2 + X′2

=

o1

Disc(f) Disc(g)α

i1

i2 o2

o′1

Disc(f ′) Disc(g′)α′

i′1

i′2 o′2

o1 + o′1

Disc(f + f ′) Disc(g + g′)α + α′

i1 + i′1

i2 + i′2 o2 + o′2

Proof. The categories Set and Gph/BM have finite colimits (see Proposition 3.13(a)) and Disc : Set →
Gph/BM preserves them, since it is a left adjoint. The theory of structured cospans thus implies that
Open(Gph/GL) is a symmetric monoidal double category as above. In fact [41, Thm. 2.3] implies that
Open(Gph/GL) is a cocartesian equipment. □

Now we construct a map that turns open M-labeled graphs into open M-graded categories. To do this
we use Lemma 4.1, which says that there is an adjunction

Gph/GM Cat/BM.

FreeM

UndM

⊥

Theorem 7.5. For any monoid M there is a symmetric monoidal double functor

FM : Open(Gph/GM)→ Open(Cat/BM)

acting as follows:
• on objects, FM sends any set to itself,
• on vertical 1-morphisms, FM sends any function to itself
• on horizontal 1-cells, FM sends any open M-labeled graph

Disc(A) X Disc(B),
i o

to the open M-graded category

Disc(A) FreeM(X) Disc(B),
i o

22 GRAPHS WITH POLARITIES

• on 2-morphisms, FM sends any map of open M-labeled graphs

Disc(A) X Disc(B)

Disc(A′) X′ Disc(B′).

i o

i′ o′

Disc(f) α Disc(g)

to the map of open M-graded categories

Disc(A) FreeM(X) Disc(B)

Disc(A′) FreeM(X′) Disc(B′).

i o

i′ o′

Disc(f) FreeM (α) Disc(g)

Proof. Theorems 4.2 and 4.3 of [6] give a general way to construct maps between structured cospan double
categories. The present theorem is a straightforward application of these, which only requires checking that
the following diagram commutes up to natural isomorphism

Set

Gph/GM

Cat/BM

disc

disc

FreeM

and that all the arrows in this diagram preserve finite colimits (since they are left adjoints). □

Recall from Definition 4.2 that for any monoid M there is a category K(Gph/GM) of M-labeled graphs
and Kleisli morphisms between these, where a Kleisli morphism from (G, ℓ) to (G′, ℓ′) is defined to be a
map between free M-graded categories

f : FreeM(G, ℓ)→ FreeM(G′, ℓ′).

We can use the theory of structured cospans to define a double category of open M-labeled graphs and
Kleisli morphisms. To do this, we use the functor

Φ : Set→ K(Gph/GM)

defined as follows:
• Φ sends any set S to the unique M-graded category with object set S and only identity morphisms.

Note that this M-graded category is FreeM(G, ℓ) where G is the graph with vertex set S and no
edges, and ℓ is the only possible ℓ-labeling of G.
• Φ sends any function f : S → T to the unique map of M-graded categories acting as f on objects.

Theorem 7.6. For any monoid M, there is a symmetric monoidal double category of open M-labeled graphs
and Kleisli morphisms, Open(K(Gph/GM)), in which

• an object is a set,
• a vertical 1-morphism from A to B is a function f : A→ B,
• a horizontal 1-cell from A to B is an open M-labeled graph from A to B:

Φ(A) X Φ(B),
i o

• a 2-morphism is a Kleisli morphism of open M-labeled graphs, that is, a commutative diagram
in K(Gph/GM) of the form

Φ(A) X Φ(B)

Φ(A′) X′ Φ(B′).

i o

i′ o′

Φ(f) α Φ(g)

GRAPHS WITH POLARITIES 23

Vertical composition is done using composition in Set, while horizontal composition is done using pushouts
in K(Gph/GM). The tensor product of two open M-labeled graphs is

X X′ X + X′

⊗ =

Φ(A) Φ(B) Φ(A′) Φ(B′) Φ(A + A′) Φ(B + B′)

i o i′ o′ i+i′ o+o′

where i+ i′ and o+ o′ are defined using the fact that Φ preserves binary coproducts, and the tensor product
of two 2-morphisms is given by:

Φ(A1) Φ(B1)X1

Φ(A2) Φ(B2)X2

Φ(A′1) Φ(B′1)X′1

Φ(A′2) Φ(B′2)X′2

⊗

Φ(A1 + A′1) Φ(B1 + B′1)X1 + X′1

Φ(A2 + A′2) Φ(B2 + B′2).X2 + X′2

=

o1

Φ(f) Φ(g)α

i1

i2 o2

o′1

Φ(f ′) Φ(g′)α′

i′1

i′2 o′2

o1 + o′1

Φ(f + f ′) Φ(g + g′)α + α′

i1 + i′1

i2 + i′2 o2 + o′2

Proof. As mentioned in the proof of Theorem 7.2, a commonly stated theorem for constructing a symmetric
monoidal double category of F-structured cospans assumes that we have categories A and X with finite
colimits and a functor F : A → X that preserves them. We would like to apply this theorem to the functor
Φ : Set→ K(Gph/GM). Unfortunately, while the category Set has finite colimits,Φ preserves them, and the
Kleisli category K(Gph/GM) has finite coproducts, this Kleisli category does not have pushouts. Luckily,
if one examines the proof of the commonly stated theorem, it becomes clear that we only need pushouts at
one point: to compose structured cospans. In the case at hand, this means taking pushouts of this sort:

Φ(A)

X

Φ(B)

Y

Φ(C)

X +Φ(B) Y
⌜

i o i′ o′

where X and Y are free M-graded categories. This pushout exists in Cat/BM, and the result is a free M-
graded category, because in forming the pushout we do not need to identify any morphisms, only objects.
It follows that this pushout also exists in K(Gph/GM). □

Finally, given a commutative monoid C, we can define a symmetric monoidal double category of open
C-labeled finite graphs and additive morphisms. However, we cannot do this using structured cospans and
the left adjoint FinSet → CFinGph to the functor assigning any C-labeled finite graph its set of vertices,
since CFinGph does not have finite coproducts or pushouts, not even the limited class of pushouts that
would be used to compose structured cospans. Thus, it seems we must invoke the theory of decorated
cospans, introduced by Fong [16, 17] and later brought up to the level of double categories [7].

In this approach we view an open C-labeled finite graph

disc(A)

X

disc(B)

i o

24 GRAPHS WITH POLARITIES

in a new way. We think of it as a cospan of finite sets

A

V

B

i o

where V is ‘decorated’ with some extra stuff: namely, a C-labeled finite graph X having V as its set of
vertices. We think of this ‘decoration’ X as an object of the category F(V), where F : FinSet → Cat maps
each finite set to the category of C-labeled finite graphs with that set of vertices, and additive morphisms
between these.

In general, the theory of decorated cospans gives a symmetric monoidal double category FCsp from a
category A with finite colimits and a symmetric lax monoidal pseudofunctor F : (A,+) → (Cat,×). In this
double category FCsp:

• an object is an object of A;
• a vertical 1-morphism is a morphism of A;
• a horizontal 1-cell is an F-decorated cospan, that is, a diagram in A of the form

A

M

B

i o

together with a decoration d ∈ F(M);
• a 2-morphism is a map of F-decorated cospans, that is, a commutative diagram in A of the form

A

A′

M B

B′M′

d ∈ F(M)

d′ ∈ F(M′)

i o

f g

i′ o′

h

together with a decoration morphism τ : F(h)(d)→ d′ in F(M′).
A key piece of the symmetric lax monoidal pseudofunctor F is its ‘laxator’, which gives for each pair of
objects M,M′ ∈ A a functor

ϕM,M′ : F(M) × F(M′)→ F(M + M′).
This is used to compose F-decorated cospans, as follows. Given a composable pair of F-decorated cospans

A

M

B

d ∈ F(M)

B

N

C

d′ ∈ F(M′)
i o i′ o′

we define their composite to be

A

M

B

M′

C.

M +B M′ F(j)
(
ϕM,M′ (d, d′)

)
∈ F(M +B M′)

⌜

i o i′ o′

Here the cospans are composed using a pushout in A, while the decoration is defined using the laxator and
j : M + M′ → M +B M′, the canonical map from the coproduct to the pushout. For details see [7, Sec. 2].

To define the double category of C-labeled finite graphs using this machinery we take A = FinSet. We
want a decoration of V ∈ FinSet to be a C-labeled finite graph with V as its set of vertices. Thus we let
F : (FinSet,+)→ (Cat,×) assign to V the category F(V) where:

• An object is a C-labeled finite graph with vertex set V , say (V, E, s, t, ℓ).
• A morphism is an additive morphism of C-labeled graphs that is the identity on vertices.

We let F assign to each function g : V → V ′ the functor F(g) : F(V)→ F(V ′) where:
• F(g) sends any object (V, E, s, t, ℓ) to (V ′, E, g ◦ s, g ◦ t, ℓ).

GRAPHS WITH POLARITIES 25

• F(g) sends any morphism f : (V, E, s, t, ℓ) → (V, E′, s′, t′, ℓ′) in F(V), which is determined by a
map of graphs 1V : V → V , f1 : E → E′, to the morphism F(g)(f) : (V, E, f1 ◦ s, f1 ◦ t, ℓ) →
(V ′, E′, f1 ◦ s, f1 ◦ t, ℓ′) in F(V ′) determined by the map of graphs 1V ′ : V ′ → V ′, f1 : E → E′.

To parse this, it is useful to review the definition of ‘additive morphism’, Definition 5.1.
Next we must equip F with the structure of a lax monoidal pseudofunctor [7]. We omit some details

here. The most important structure is the laxator

ϕV,V ′ : F(V) × F(V ′)→ F(V + V ′).

On objects, this takes a C-labeled finite graph with vertex set V , say (V, E, s, t, ℓ), and a C-labeled finite
graph with vertex set V ′, say (V ′, E′, s′, t′, ℓ′), and gives the C-labeled finite graph

(V + V ′, E + E′, s + s′, t + t′, ⟨ℓ, ℓ′⟩)

with vertex set V + V ′. Here ⟨ℓ, ℓ′⟩ : E + E′ → C is defined to equal ℓ on E and ℓ′ on E′.
Given that F : (FinSet,+) → (Cat,×) is a symmetric lax monoidal pseudofunctor, the theory of deco-

rated cospans gives this result:

Theorem 7.7. For any commutative monoid C, there is a symmetric monoidal double category of open
C-labeled finite graphs and additive morphisms, Open(CFinGph), in which

• an object is a finite set;
• a vertical 1-morphism from A to B is a function f : A→ B;
• a horizontal 1-cell from A to B is an open C-labeled finite graph from A to B:

A M B d ∈ F(M);
i o

• a 2-morphism is an additive morphism of open C-labeled graphs, that is, a commutative diagram
in CFinGph of the form

A M B d ∈ F(M)

A′ M′ B′ d′ ∈ F(M′).

i o

i′ o′

f α g

Vertical composition is done using composition in FinSet, while horizontal composition is done using com-
position of F-decorated cospans.

Proof. The double category structure follows from [7, Thm. 2.1]. The symmetric monoidal structure, which
we have not described here, follows from [7, Thm. 2.2], and is detailed there. □

8. Feedback loops and homology

In system dynamics, graphs labeled by signs are often used to study feedback loops. We can approach
this systematically for graphs labeled by elements of a commutative monoid using homology theory. Ho-
mology lets us detect cycles in a graph. The homology of a graph with coefficients in an abelian group is
well understood, and independent of the direction of the graph’s edges, but in fact we can define the homol-
ogy of a graph with coefficients in a commutative monoid, in a way that depends on the edge directions.
We are most interested in taking coefficients in N, because this gives a way to study feedback loops.

Let C be a commutative monoid. In what follows we use C[X] to stand for the set of formal finite linear
combinations of elements of X, with coefficients in C. Thus,

C[X] =

∑
x∈X

axx
∣∣∣∣ ax ∈ C, all but finitely many ax are zero

 .
This is a commutative monoid under addition. In particular, if we make N into a commutative monoid with
addition as the monoid operation, N[X] is the free commutative monoid on X.

Definition 8.1. Given a graph G = (E,V, s, t) and a commutative monoid C, define

C0(G,C) = C[V], C1(G,C) = C[E].

We call C0(G,C) (resp. C1(G,C)) the commutative monoid of 0-chains (resp. 1-chains) on G with coeffi-
cients in C.

26 GRAPHS WITH POLARITIES

The source and target maps of the graph give two maps sending 1-chains to 0-chains. Namely, starting
from the maps s, t : E → V we can extend them by linearity to monoid homomorphisms

C[s],C[t] : C1(G,C)→ C0(G,C).

Indeed, there is a functor C[−] : Set → CommMon. We have already defined this on objects, and given a
map of sets f : X → Y we define C[f] : C[X]→ C[Y] by

C[f]

∑
x∈X

axx

 =∑
x∈X

ax f (x).

When C is an abelian group we can define a group homomorphism d : C1(G,C)→ C0(G,C) by

d = C[s] −C[t].

In this context the usual expressions for homology groups as quotient groups simplify, and we can define

H1(G,C) = ker d, H0(G,C) = coker d.

But when working with commutative monoids that are not abelian groups, we cannot form the difference
C[s] −C[t], so we use the equalizer and coequalizer of C[s] and C[t] rather than the kernel and cokernel of
their difference, defining

H1(G,C) = eq(C[s],C[t]), H0(G,C) = coeq(C[s],C[t]).

More formally:

Definition 8.2. Given a graph G and a commutative monoid C, we define H1(G,C), the first homology of
G with coefficients in C, to be the equalizer of the morphisms

C1(G,C) C0(G,C).
C[s]

C[t]

We call an element of H1(G,C) a 1-cycle or simply a cycle with coefficients in C. We define H0(G,C), the
zeroth homology of G with coefficients in C, to be the coequalizer of s and t.

We can fit everything into one diagram as follows:

H1(G,C) C1(G,C) C0(G,C) H0(G,C).i
C[s]

C[t]

p

where i is the inclusion of the equalizer of C[s] and C[t] and p is the projection onto their coequalizer.
When C is an abelian group, we can rewrite this as an exact sequence

0→ H1(G,C)
i
−→ C1(G,C)

d
−→ C0(G,C)

p
−→ H0(G,C)→ 0.

Example 8.3. This graph:

G = u v

has H1(G,N) � N, while this graph

G′ = u v

has H1(G′,N) � {0}. In simple terms, this says that the first graph offers the opportunity for a feedback loop,
while the second does not. On the other hand, we have H1(G,Z) � H1(G′,Z) � Z. We have H0(G,N) �
H0(G,N′) � {0} and similarly with Z coefficients, since both graphs are connected.

The zeroth homology of a graph with coefficients in a commutative monoid is easily understood. There
are various concepts of ‘connected component’ for a graph, but define the set of undirected components
of a graph G, π0(G), to be the coequalizer

(3) E V π0(G).
s

t

p

Thus, two vertices v, v′ lie in the same undirected component iff there is an undirected path from v to v′: a
sequence of vertices v = v0, . . . , vn = v′ such that for each i = 1, . . . , n there is either an edge e : vi−1 → vi

or an edge e : vi → vi−1.

Theorem 8.4. Let G be a graph and C a commutative monoid. Then H0(G,C) � C[π0(G)].

GRAPHS WITH POLARITIES 27

Proof. This can be shown directly, but we sketch a proof using some facts, well known for abelian groups,
which have easy analogues for commutative monoids [37] and even more general algebraic structures [28].
First, given A, B ∈ CommMon, the set of homomorphisms A→ B can be made into a commutative monoid
[A, B] using pointwise operations:

(f + g)(a) = f (a) + g(a), ∀ f , g ∈ [A, B], a ∈ A.

Second, we can define a tensor product A⊗B of commutative monoids such that homomorphisms A⊗B→ C
correspond naturally to maps A × B → C that are homomorphisms in each argument. This tensor product
obeys hom-tensor adjointness: that is, there is a natural isomorphism

CommMon(A ⊗ B,C) � CommMon(B, [A,C]).

For any commutative monoid C there is a natural isomorphism

C[−] � C ⊗ N[−]

of functors from CommMon to Set. The functor N[−] is a left adjoint to the forgetful functor from
CommMon to Set, and the functor C ⊗ − is left adjoint to the functor [C,−]. It follows that C[−] �
C ⊗ N[−] : Set → CommMon is a left adjoint, so it preserves colimits. Applying this functor to the co-
equalizer diagram (3), we get a coequalizer diagram

C[E] C[V] C[π0(G)].
C[s]

C[t]

C[t]

On the other hand, we have defined H0(G,C) as the coequalizer

C[E] C[V] H0(G,C)
C[s]

C[t]

C[t]

though we have denoted C[E] as C1(G,C) and C[V] as C0(G,C). It follows that H0(G) � C[π0(G)]. □

Now let us turn to the first homology of a graph G with coefficients in a commutative monoid. When C
is an abelian group, H1(G,C) is isomorphic to the homology of the graph G viewed as a topological space,
which is well understood [34, Sec. III.3]. For example, H1(G,Z) is a free abelian group whose rank is
the genus of the graph. More generally, whenever C is an abelian group, the universal coefficient theorem
implies

H1(G,C) � C ⊗Z H1(G,Z).

The novelty lies in the case when C is not a group, since then the directions of the edges matter, as in
Example 8.3. We are then doing a simple sort of ‘directed algebraic topology’. We are mainly interested
in the case C = N, since this captures the structure of possible feedback loops in the graph. We now
turn toward analyzing the structure of H1(G,N). As we shall seein Example 8.7, it is not always a free
commutative monoid.

To begin, note that there is a canonical preorder on any commutative monoid C, given by

x ≤ y ⇐⇒ x + a = y for some a ∈ C.

If C is an abelian group then x ≤ y for all x, y ∈ C. But for C = N, the canonical preorder is the usual
linear ordering on natural numbers. More generally, in the free commutative monoid N[X] on any set X the
canonical preorder is given by∑

x∈X

axx ≤
∑
x∈X

Bxx ⇐⇒ ax ≤ Bx for all x ∈ X.

Definition 8.5. Given a commutative monoid C, an element x ∈ C is minimal if it is nonzero and y ≤ x
implies that y = x or y = 0.

Any free commutative monoid N[X] is freely generated by its minimal elements, which correspond to
the elements of X. A weaker statement holds for the first homology of a graph with coefficients in N.

Theorem 8.6. For any graph G, H1(G,N) is generated by its minimal elements.

Proof. First recall that H1(G,N) is a submonoid of C1(G,N) � N[E] where E is the set of edges of G. The
canonical preorder on H1(G,N) is a restriction of that in C1(G,N), since given x, y ∈ H1(G,N) there exists
z ∈ C1(G,N) with x + z = y if and only if there exists z ∈ H1(G,N) obeying this equation. As a result, since

28 GRAPHS WITH POLARITIES

there are no infinite descending chains of elements c1 > c2 > c3 > · · · in C1(G,N) � N[E], there are no
infinite descending chains in H1(G,N).

Next we use this to show that any c ∈ H1(G,N) is a sum of minimal elements. If c is minimal, we are
done. Otherwise we can write c as a sum of two smaller but nonzero elements. If these are both minimal
then we are done; if not, we can express either one that is not minimal as a sum of two smaller nonzero
elements. If we could keep repeating the process of breaking each non-minimal element into a sum of two
smaller nonzero elements forever, then H1(G,N) would have an infinite descending chain. But since this is
impossible, the process must terminate, expressing c as a finite sum of minimal elements. □

Example 8.7. Consider the graph

Q = u v

e1

e2

e3

e4

One can see that the minimal elements of H1(Q,N) are the cycles

a = e1 + e3, b = e1 + e4, c = e2 + e3, d = e2 + e4.

Thus these generate H1(Q,N), but not freely, since a + c = b + d. Moreover, note that a free commutative
monoid is always freely generated by its minimal elements, since for any set S , the minimal elements of the
free commutative monoidN[S] are precisely the linear combinations of elements of S where one coefficient
equals 1 and all the rest are zero. Thus, H1(Q,N) is not a free commutative monoid.

We call the minimal elements of H1(G,N) minimal cycles. We are interested in them because they
determine the feedback around all cycles in G. Let us make this precise. For any commutative monoid C
and any C-labeled graph (G, ℓ), there is a map

C1(G,N)→ C

defined by ∑
e∈E

nee 7→
∑
e∈E

neℓ(e).

Indeed this is the unique homomorphism of commutative monoids extending ℓ from E to the free commu-
tative monoid on E, namely C1(G,N). If we restrict this map to cycles we get a homomorphism that we
call

ℓ̃ : H1(G,N)→ C.
Given a cycle c ∈ H1(G,N), we call ℓ̃(c) the feedback of (G, ℓ) around c.

Corollary 8.8. For any commutative monoid C and any C-labeled graph (G, ℓ), the homomorphism ℓ̃ : H1(G,N)→
C is determined by its values on minimal cycles.

Proof. This follows from Theorem 8.6: minimal cycles generate H1(G,N). □

While they are defined in an order-theoretic way, minimal cycles have an appealing ‘geometrical’ char-
acterization as homology classes of certain ‘simple’ loops in G.

Definition 8.9. Let G be a graph. A path in G is a finite sequence of edges e1, . . . en such that t(ei) = s(ei+1)
for i = 1, . . . , n − 1. An loop is an path that ends where it starts, meaning s(e1) = t(en).

We can denote any path in G as follows:

v0
e1
−→ v1

e2
−→ · · ·

en−1
−−−→ vn−1

en
−→ vn

and a loop as follows:
v0

e1
−→ v1

e2
−→ · · ·

en−1
−−−→ vn−1

en
−→ v0

Note from Section 4 that the paths in a graph G are precisely the morphisms in the free category on G.
Any path γ in G gives an element of [γ] ∈ C1(G,N), defined to be the sum of that path’s edges. That is,

if
γ =
(
v0

e1
−→ v1

e2
−→ · · ·

en−1
−−−→ vn−1

en
−→ vn

)
then we define

[γ] = e1 + · · · + en.

GRAPHS WITH POLARITIES 29

If γ is a loop then [γ] is a cycle since then

s(e1) + · · · + s(en) = t(e1) + · · · + t(en).

Definition 8.10. Two loops γ, δ in a graph G are homologous if [γ] = [δ].

Definition 8.11. A loop
v0

e1
−→ v1

e2
−→ · · ·

en−1
−−−→ vn−1

en
−→ v0

is simple if all the vertices v0, . . . , vn−1 are distinct.

It is easy to see that if a loop γ is not simple, we can chop it where it crosses itself, obtaining two loops
δ and η such that

[γ] = [δ] + [η]
and [δ], [η] , 0. Thus, [γ] cannot be minimal if γ is not simple. In fact a much stronger result holds:

Theorem 8.12. For any graph G, there is a bijection between homology classes of simple loops in G and
minimal cycles in G, which sends all loops equivalent to the simple loop γ to the cycle [γ].

Proof. This follows from Lemmas 8.13 and 8.14 below. □

Lemma 8.13. If γ is a simple loop in a graph G then [γ] is a minimal cycle.

Proof. Consider a simple loop
γ =
(
v0

e1
−→ v1

e2
−→ · · ·

en
−→ v0

)
.

Then

[γ] =
n∑

i=1

ei.

Any cycle c ≤ [γ] must be a chain less than or equal to c in C1(G,N), and since C1(G,N) is the free
commutative monoid on the set of edges of G, any chain c ≤ [γ] must be of the form

c =
∑
i∈S

ei.

where S ⊆ {1, . . . , n}. We have

N[s](c) =
∑
i∈S

vi−1, N[t](c) =
∑
i∈S

vi.

For c to be a cycle we must have N[s](c) = N[t](c). But since all the vertices v1, . . . , vn are distinct (while
v0 = vn), the two sums above can only be equal if S is all of {1, . . . , n}, in which case c = [γ], or S is empty,
in which case c = 0. (Note that since C0(G,N) is free on the set of vertices of G, the two sums can only be
equal if they are ‘visibly’ equal: there are no extra relations.) Thus [γ] is minimal. □

Lemma 8.14. For each minimal cycle c in a graph G there exists a simple loop γ in G such that [γ] = c.

Proof. Let c be a minimal cycle. It is nonzero, so choose an edge with e1 ≤ c in C1(G,N). Denote this edge
as v0

e1
−→ v1. If v1 = v0 the path v0

e1
−→ v1 is a loop, say γ, so [γ] = e1 is a nonzero cycle, so by the minimality

of c we must have c = [γ] and we are done. If on the other hand v1 , v0 then e1 is not a cycle, so c must be
the sum of e1 and one or more edges, and at least one of these edges must have source v1, since otherwise
it would be impossible to have s(c) = t(c). Choose one such edge and call it v1

e2
−→ v2. We now have a path

δ =
(
v0

e1
−→ v1

e2
−→ v2

)
with δ ≤ c and with v0, v1 distinct.

We continue along these lines by carrying out an inductive procedure. Assume we have a path

δ =
(
v0

e1
−→ · · ·

en
−→ vn

)
with [δ] ≤ c and v0, . . . , vn−1 distinct. If vn equals any of the previous vertices, say vn = vi with 0 ≤ i < n,
then we obtain a simple loop

γ =
(
vi

ei+1
−−→ · · ·

en
−→ vn

)
.

Since [γ] is a nonzero cycle less than or equal to [δ] and thus c, by the minimality of c we must have c = [γ]
and we are done. Otherwise all the vertices v0, . . . , vn are distinct, so [δ] is not a cycle, so c must be a sum

30 GRAPHS WITH POLARITIES

of [δ] and one or more edges, and at least one of these edges must have source vn, since otherwise it would
be impossible to have s(c) = t(c). Choose one such edge and denote it by vn

en+1
−−−→ vn+1. We now have a path

δ′ =
(
v0

e1
−→ v1

e2
−→ · · ·

en
−→ vn

en+1
−−−→ vn+1

)
with [δ′] ≤ c and v0, . . . , vn distinct.

Since c is a finite sum of edges this procedure must eventually terminate: i.e., eventually vk must equal
one of the previous vertices v0, . . . , vk−1, which are themselves all distinct. We thus obtain a simple loop γ
giving a nonzero cycle [γ] ≤ c, and by the minimality of c we must have [γ] = c. □

Having established a bijection between minimal cycles and homology classes of simple loops, we natu-
rally want to know when two simple loops are homologous. It turns out that the only way to obtain a loop
homologous to a simple loop is to change where the loop starts. More precisely:

Proposition 8.15. Every loop homologous to a simple loop

v0
e1
−→ v1

e2
−→ · · ·

en−1
−−−→ vn−1

en
−→ v0

is of the form

vk
ek+1
−−−→ vk+1

ek+2
−−−→ · · ·

en+k−1
−−−−→ vn+k−1

en+k
−−−→ vk

where we treat the subscripts as elements of Z/n and do addition mod n.

Proof. Suppose

γ =
(
v0

e1
−→ v1

e2
−→ · · ·

en−1
−−−→ vn−1

en
−→ v0

)
is a simple loop and

δ =
(
w0

f1
−→ w1

f2
−→ · · ·

fm−1
−−−→ wm−1

fm
−−→ w0

)
is a loop homologous to γ, so

e1 + · · · + en = f1 + · · · + fm.

Since γ is simple, all the vertices v0, . . . , vn−1 are distinct, so the edges e1, . . . , en are distinct. We must
thus have m = n, with the list of edges f1, . . . , fn being some permutation of the list of edges e1, . . . , en.
Since all the vertices v0, . . . , vn−1 are distinct, the only permutations that make δ into a loop are cyclic
permutations. □

9. Emergent feedback loops

When we glue together two graphs, the resulting graph can have loops that are not contained in either
of the original graphs. These are called ‘emergent loops’. In applications, these represent new possible
feedback loops that arise when we combine two systems. Since feedback loops are fundamental in system
dynamics, it is important to pay close attention to this phenomenon.

There are several ways to study emergent loops. The first is to study emergent paths in graphs formed
by composing open graphs. We described a double category Open(Gph/GL) of open L-labeled graphs in
Theorem 7.2, and we can define the double category of open graphs, Open(Gph), to be the special case
where L is the one-element set, so the labeling becomes trivial. To compose two open graphs:

disc(A)

X

disc(B) disc(B)

Y

disc(C)

we take their pushout over a discrete graph on some set B:

disc(A)

X

disc(B)

Y

disc(C).

X +disc(B) Y
⌜

GRAPHS WITH POLARITIES 31

To study paths in the pushout graph, let us simplify the diagram to the relevant part:

X

disc(B).

Y

X +disc(B) Y
⌜

Paths in the pushout graph are morphisms in the free category Free(X +disc(B) Y). The left adjoint functor
Free : Gph → Cat preserves pushouts, so we can apply this functor to the above diagram and obtain the
following pushout diagram:

Free(X)

Disc(B)

Free(Y)

Free(X) +Disc(B) Free(Y)

⌜

since Disc(B) � Free(disc(B)). For convenience let us make the abbreviation

C = Free(X) +Disc(B) Free(Y).

Then the set of paths from a vertex v of the pushout graph to the vertex w is the homset C(v,w). We would
like to understand which of these paths are ‘emergent’, i.e., not already paths in X or Y .

Let M{x, y} be the free monoid on two generators x and y. Then the category C has a unique M{x, y}-
grading where each edge of X has grade x and each edge of Y has grade y. Let I{x, y} be the quotient of the
monoid M{x, y} by relations saying that x and y are idempotent:

x2 = x, y2 = y.

Bt Proposition 4.4, the quotient map M{x, y} → I{x, y} lets us push forward the M{x, y}-grading on C to
obtain an I{x, y}-grading on this category. This has a simplifying effect: now the grade of a path records
only how it goes back and forth between the graphs X and Y .

We can write

C(v,w) =
⊔

m∈I{g,h}

Cm(v,w)

where Cm(v,w) is the set of paths of grade m from v to w. If v and w are vertices in X, the paths in Cx(v,w)
are those that already existed in X, while all the other paths in X(v,w) are ‘emergent’. Similarly, if v and w
are vertices in Y , all the paths not in Cy(v,w) are emergent. The grading gives a measure of the ‘amount of
emergence’ involved in each path.

Example 9.1. Suppose X is the graph in red below while Y is the graph in blue, and B is the set of purple
vertices:

b

a d e f i

c g

h

If we treat the category C as M{x, y}-graded, the path in bold from a to c has grade x3y2x, if we adopt the
convention of multiplying elements in M{x, y} from left to right as we move along the path. If we switch to
treating C as I{x, y}-graded, the same path has grade xyx ∈ I{x, y}. This indicates that the path starts in X,
then goes into Y , and then comes back into X.

32 GRAPHS WITH POLARITIES

Another approach to emergence involves understanding how the first homology of the pushout graph
X +disc(B) Y is related to that of the graphs X and Y . For this let us assume that the maps j and k in the
pushout diagram

X

disc(B)

Y

X +disc(B) Y
⌜

j k

iX iY

are monic. It follows all the arrows in the diagram are monic, so X and Y are subgraphs of X+disc(B) Y having
no edges in common, and their intersection is the discrete graph disc(B). This is the case in Example 9.1.
To simplify the notation further, let us define

X ∪ Y = X +disc(B) Y, X ∩ Y = disc(B).

In this situation, the first homology with coefficients in an abelian group A is well-understood. Here the
classical Mayer–Vietoris sequence [22] reduces to the following exact sequence of abelian groups:

0→ H1(X, A) ⊕ H1(Y, A) −→ H1(X ∪ Y, A) −→

H0(X ∩ Y, A) −→ H0(X, A) ⊕ H0(Y, A) −→ H0(X ∪ Y, A) −→ 0.

The abelian group H1(X, A) ⊕ H1(Y, A) consists of non-emergent cycles, which existed in X and Y before
we glued these graphs together along the vertices in B. It is a subgroup of the group of actual interest,
H1(X ∪ Y). The quotient of H1(X ∪ Y) by this subgroup may thus be seen as the group of ‘emergent’
1-cycles.

We thus focus on this portion of the Mayer–Vietoris exact sequence:

(4) 0→ H1(X, A) ⊕ H1(Y, A)
ι
−→ H1(X ∪ Y, A)

∂
−→ H0(X ∩ Y, A)

and define the group of emergent 1-cycles to be

coker ι =
H1(X ∪ Y, A)

im ι
=

H1(X ∪ Y, A)
ker ∂

.

There is a short exact sequence expressing the group of 1-cycles on X ∪ Y as an extension of the group of
emergent 1-cycles by the group of non-emergent 1-cycles:

0→ H1(X, A) ⊕ H1(Y, A)
ι
−→ H1(X ∪ Y, A)→ coker ι→ 0.

To go further we need explicit formulas for ι and ∂:

• ι = ιX+ιY where ιX : H1(X, A)→ H1(X∪Y, A) is the map induced from the inclusion iX : X → X∪Y ,
and similarly ιY : H1(Y, A)→ H1(X ∪ Y, A) is the map induced from iY .
• ∂ may be defined as follows. We can uniquely express c ∈ H1(X ∪ Y, A) ⊆ C1(X ∪ Y, A) as a sum of

1-chains

cX ∈ C1(X, A) ⊆ C1(X ∪ Y, A), cY ∈ C1(Y, A) ⊆ C1(X ∪ Y, A).

These 1-chains are generally not themselves 1-cycles, but their boundaries sum to zero, and the
boundary of cX lies in C1(X, A) while that of cY lies in C1(Y, A), so

dcX = −dcY ∈ C0(X ∩ Y, A) ⊆ C0(X ∪ Y, A).

We thus define ∂c by

∂c = dcX = −dcY ∈ C0(X ∩ Y, A) = H0(X ∩ Y, A).

Our choice to define ∂c to be dcX rather than dcY is an arbitrary sign convention.
Next we need to adapt these ideas to homology with coefficients in a commutative monoid C. A case of

special interest is C = N, since the first homology of a graph with coefficients in N controls feedback as in
Corollary 8.8, and we have a fairly clear picture of this first homology thanks to Theorems 8.6 and 8.12.

GRAPHS WITH POLARITIES 33

We continue to assume we have a union of graphs whose intersection is a discrete graph, i.e., a graph
with no edges:

X

X ∩ Y

Y

X ∪ Y
⌜

j k

iX iY

It is notationally convenient to treat H1(X,C) ⊆ C1(X,C),H1(Y,C) ⊆ C1(Y,C) and H1(X ∪ Y,C) as sub-
monoids of C1(X ∪ Y,C). Since every edge of X ∪ Y is either an edge of X or of Y , but not both, we
have

C1(X ∪ Y,C) = C1(X,C) ⊕C1(Y,C)

where we write an equals sign because this is an ‘internal direct sum’: every element c ∈ C1(X∪Y,C) can be
uniquely written as a sum of elements cX ∈ C1(X,C) and cY ∈ C1(Y,C). We define monoid homomorphisms
pX , pY : C1(X ∪ Y,C)→ C1(X ∪ Y,C) by

pX(c) = cX , pY (c) = cY .

It is also convenient to treat C0(X,C),C0(Y,C) and C0(X∩Y,C) as submonoids of C0(X∪Y,C). We abbreviate

C[s],C[t] : C1(X ∪ Y,C)→ C0(X ∪ Y,C)

simply as s and t. We can also use these notations for the maps

C[s],C[t] : C1(X)→ C0(Y)

and
C[s],C[t] : C1(Y)→ C0(Y)

without confusion, since these are restrictions of the maps s and t defined on all of C1(X ∪ Y,C).
The natural map from the coproduct X + Y to the pushout X ∪ Y induces a map on homology

ι : H1(X,C) ⊕ H1(Y,C)→ H1(X ∪ Y,C).

This map ι sends any pair (cX , cY) to the sum cX + cY . This map is a monomorphism, but perhaps not an
isomorphism, since there may be emergent cycles. The following Mayer–Vietoris-like theorem clarifies the
situation. The theorem simplifies when C is cancellative, meaning that

c + e = d + e =⇒ c = d.

Theorem 9.2. If C is a commutative monoid and X,Y are subgraphs of a graph X ∪ Y whose intersection
X ∩ Y is a discrete graph, then the following is an equalizer diagram in the category of commutative
monoids:

H1(X,C) ⊕ H1(Y,C) H1(X ∪ Y,C) C0(X,C) ⊕C0(Y,C).ι
(spX ,spY)

(tpX ,tpY)

If C is cancellative, the following diagram is also an equalizer:

H1(X,C) ⊕ H1(Y,C) H1(X ∪ Y,C) C0(X,C).ι
spX

tpX

as is the analogous diagram with pX replaced by pY .

Proof. For the first equalizer, first we show that spX = tpX and spY = tpY on the image of ι. Any element
in the image of ι is of the form c = cX + cY with cX ∈ H1(X,C) and cY ∈ H1(Y,C). Since pXcX = cX and
pXcY = 0, we have

spXc = scX = tcX = tpXc.

Similarly we have spYc = tpYc.
Next we show that any c ∈ H1(X ∪ Y,C) with spXc = tpXc and spYc = tpYc is in the image of ι. These

equations say that pXc ∈ H1(X,C) and pYc ∈ H1(Y,C), so c = pXc + pYc = ι(pXc, pYc).
We can reduce the second equalizer diagram to the first if we show spXc = tpXc implies spYc = tpYc

for any c ∈ H1(X ∪ Y,C). Here we need C to be cancellative. Since c is a cycle we have sc = tc and thus

spXc + spYc = tpXc + tpYc.

34 GRAPHS WITH POLARITIES

Since C is cancellative so is C0(X ∪ Y,C), so we can subtract the equation spXc = tpXc from the above
equation and conclude

spYc = tpYc.
The diagram with pX replaced by pY works the same way. □

Example 9.3. If C is not cancellative, it is possible to have a cycle cX ∈ H1(X,C) and a 1-chain that is not
a cycle, cY ∈ C1(Y,C), whose sum is a cycle cX + cY ∈ H1(X ∪ Y,C).

v w

e1

T

T

e2

T

e3

Above is a B-labeled graph where B = {0, 1} with addition as in Example 6.2. The subgraph X contains
only the red edges, while the subgraph Y contains only the blue edges. The vertices lie in X ∩ Y , which is
the discrete graph on these two vertices. Let

cX = e1 + e2, cY = e3.

Then cX is a cycle, cY is not a cycle, and cX + cY is a cycle because

s(cX + cY) = s(e1 + e2 + e3) = v + w + w = v + w, t(cX + cY) = t(e1 + e2 + e3) = w + v + v = v + w.

We can state a Mayer–Vietoris theorem that more closely resembles Equation (4) if we use the monoid
homomorphism

q : C0(X,C)→ C0(X ∩ Y,C)
given by

q
(∑

v∈{vertices of X}

cv v
)
=

∑
v∈{vertices of X∩Y}

cv v.

That homomorphism kills off all vertices of X that are not also in Y . A priori H0(X ∩ Y,C) is a quotient of
C0(X ∩ Y,C), but X ∩ Y has no edges so the quotient map is an isomorphism C0(X ∩ Y,C) ∼−→ H0(X ∩ Y,C).
We shall use this isomorphism to identify these two monoids, and treat q as a monoid homomorphism

q : C0(X,C)→ H0(X ∩ Y,C).

Theorem 9.4. If C is a cancellative commutative monoid and X,Y are subgraphs of a graph X ∪ Y whose
intersection X ∩ Y is a discrete graph, then the following is an equalizer diagram in the category of com-
mutative monoids:

H1(X,C) ⊕ H1(Y,C) H1(X ∪ Y,C) H0(X ∩ Y,C).ι
qspX

qtpX

By the symmetry between X and Y, the analogous diagram with pX replaced by pY is also an equalizer.

Proof. By Theorem 9.2 it suffices to show that c ∈ H1(X ∪ Y,C) has spXc = tpXc if and only if qspXc =
qtpXc. One direction of the implication is obvious, so we suppose qspXc = qtpXc and aim to show that
spXc = tpXc.

We write
c =

∑
e∈{edges of X∪Y}

cee.

Since c is a cycle we have ∑
e∈{edges of X∪Y}

ces(e) =
∑

e∈{edges of X∪Y}

cet(e).

There are three mutually exclusive choices for a vertex in X ∪ Y: it is either 1) in X but not Y , 2) in X ∩ Y ,
or 3) Y but not in X. In case 1) we say the vertex is in X − Y and in case 3) we say the vertex is in Y − X,
merely by way of abbreviation. The above equation thus implies three equations, of which the important
one is the first: ∑

e∈{edges of X∪Y whose source is in X−Y}

ces(e) =
∑

e∈{edges of X∪Y whose target is in X−Y}

cet(e)

Since an edge of X ∪ Y whose source is in X − Y must be an edge of X, this equation is equivalent to∑
e∈{edges of X whose source is in X−Y}

ces(e) =
∑

e∈{edges of X whose target is in X−Y}

cet(e).

GRAPHS WITH POLARITIES 35

Since qspXc = qtpXc we also know that∑
e∈{edges of X whose source is in X∩Y}

ces(e) =
∑

e∈{edges of X whose target is in X∩Y}

cet(e).

Adding the last two equations we get ∑
e∈{edges of X}

ces(e) =
∑

e∈{edges of X}

cet(e).

This says spXc = tpXc, as desired. □

10. Conclusion

We hope these results can be used to further the use of causal loop diagrams—that is, {+,−}-labeled
graphs—and other monoid-labeled graphs in system dynamics, systems biology and other related fields.
Software already exists that explicitly uses category theory to work with causal loop diagrams and other
monoid-labeled graphs. For example, AlgebraicJulia is a software platform for doing scientific computing
with categories, and it has a package called StockFlow.jl [5, 47] that allows for the creation and composition
of open causal loop diagrams [9]. Redekopp has created a program called ModelCollab, based on Stock-
Flow.jl, whose web-based interface enables collaborative work with causal loop diagrams [39]. Separately,
Patterson and collaborators are building a software framework called CatColab, based on double categories,
and they have used it to create tools for finding motifs in M-labeled graphs when:

• M = {+,−}: causal loop diagrams [10].
• M = {+,−} × B: causal loop diagrams with boolean-valued delays [11].
• M = {+,−, 0}: causal loop diagrams with indeterminate effects [12].

We hope that some more ideas from this paper can be embodied in software.
On the other hand, many large databases of labeled graphs have already been compiled, some listed

in Pathguide [40]. A visually charismatic example is the KEGG database of pathways for metabolism,
biological information processing, and other biological processes [24]. There is thus a great opportunity for
applying new mathematics and software to analyze these labeled graphs. In addition, there is an opportunity
for better cross-fertilization between systems biology and ideas from system dynamics [46], such as system
archetypes [26].

There are also many mathematical questions to study. We briefly mention two. First, in Section 6 we
tentatively explored rig-labeled graphs. Given a rig R, it might be interesting to develop a category of
R-labeled graphs where several edges ‘in series’ can be mapped to a single edge with their labels being
multiplied:

v0
r1
−→ v1

r2
−→ · · ·

rk
−→ vk 7→ v0

r1···rk
−−−−→ vk

and also several edges ‘in parallel’ can be mapped to a single edge with their labels being added:

v
... w 7→ v w.

r1

r2

rk

r1+···+rk

We have seen that the former pattern shows up in the opposite of the category of monoid-labeled graphs
and Kleisli morphisms, while the latter shows up in the category of commutative-monoid labeled graphs
and additive morphisms.

Second, it would be interesting to understand which commutative monoids arise as H1(G,N) for some
finite graph G. As seen in Example 8.7, not all of them are free. The example there has a presentation with
four minimal cycles as generators, one relation, and no syzygies (that is, relations between relations). The
following graph

R = u v

e1

e2

e3

e4

e5

has H1(R,N) with 6 minimal cycles as generators, 3 relations, and one syzygy. This suggests that it might
be interesting to study the homology of the commutative monoids H1(G,N) for finite graphs G. (For a

36 GRAPHS WITH POLARITIES

simple introduction to the homology of monoids see Lafont [29, Sec. 4].) More generally, it suggests that
the homology H1(G,C) with coefficients in a commutative monoid C is worth studying more deeply.

References

[1] Jiřı́ Adámek and Jiřı́ Rosický. Locally Presentable and Accessible Categories. Cambridge U. Press,
1994 (cit. on pp. 10, 11).

[2] Rebekah Aduddell et al. “A compositional account of motifs, mechanisms, and dynamics in bio-
chemical regulatory networks”. In: Compositionality 6 (2024). doi: 10.32408/compositionality-6-2.
arXiv: 2301.01445 (cit. on pp. 7, 12).

[3] Uri Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman
and Hall, 2006 (cit. on p. 2).

[4] Uri Alon. “Network motifs: theory and experimental approaches”. In: Nature Reviews Genetics 8.6
(2007), pp. 450–461 (cit. on p. 11).

[5] John Baez et al. “Compositional Modeling with Stock and Flow Diagrams”. In: Electronic Proceed-
ings in Theoretical Computer Science 380 (Aug. 2023), 77–96. issn: 2075-2180. doi: 10.4204/eptcs.
380.5 (cit. on p. 35).

[6] John C. Baez and Kenny Courser. “Structured cospans”. In: Theory Appl. Categ. 35 (2020), Paper
No. 48, 1771–1822. arXiv: 1911.04630 (cit. on pp. 3, 18, 20, 22).

[7] John C. Baez, Kenny Courser, and Christina Vasilakopoulou. “Structured versus decorated cospans”.
In: Compositionality 4.3 (2022), p. 39. doi: 10 .32408 /compositionality - 4- 3. arXiv: 2101 .09363
(cit. on pp. 3, 18, 20, 23–25).

[8] John C. Baez and Jade Master. “Open Petri nets”. In: Math. Structures Comput. Sci. 30.3 (2020),
pp. 314–341. doi: 10.1017/s0960129520000043. arXiv: 1808.05415 (cit. on p. 2).

[9] John C. Baez et al. “A categorical framework for modeling with stock and flow diagrams”. In: Math-
ematics of Public Health: Mathematical Modelling from the Next Generation. Ed. by Jummy David
and Jianhong Wu. Springer, 2023, pp. 175–207. doi: https://doi.org/10.1007/978-3-031-40805-2.
arXiv: 2211.01290 (cit. on pp. 5, 35).

[10] CatColab: causal loop diagram. url: https://catcolab.org/help/theory/causal-loop (cit. on p. 35).
[11] CatColab: causal loop diagram with delays. url: https://catcolab.org/help/theory/causal-loop-delays

(cit. on p. 35).
[12] CatColab: causal loop diagram with indeterminates. url: https://catcolab.org/help/theory/indeterminate-

causal-loop (cit. on p. 35).
[13] Adittya Chaudhuri, Ralf Köhl, and Olaf Wolkenhauer. A mathematical framework to study organis-

ing principles in graphical representations of biochemical processes. 2024. arXiv: 2410.18024 (cit.
on p. 2).

[14] Kenny Courser. “Open Systems: A Double Categorical Perspective”. PhD thesis. U. C. Riverside,
2020. arXiv: 2008.02394 (cit. on pp. 3, 18).

[15] Eric H. Davidson. The Regulatory Genome: Gene Regulatory Networks in Development and Evolu-
tion. Elsevier, 2006 (cit. on p. 2).

[16] Brendan Fong. “Decorated cospans”. In: Theory Appl. Categ. 30 (2015), Paper No. 33, 1096–1120
(cit. on pp. 3, 23).

[17] Brendan Fong. “The Algebra of Open and Interconnected Systems”. PhD thesis. Cambridge U.,
2016. arXiv: 1609.05382 (cit. on pp. 3, 18, 23).

[18] J. W. Forrester. Industrial Dynamics. Pegasus Communications, 1961 (cit. on p. 2).
[19] J. W. Forrester. Urban Dynamics. Pegasus Communications, 1969 (cit. on p. 2).
[20] Abraham Ginzburg. Algebraic Theory of Automata. Academic Press, 1968 (cit. on p. 9).
[21] Jonathan S. Golan. Semirings and Their Applications. Springer, 1999 (cit. on p. 18).
[22] Allen Hatcher. Algebraic Topology. Cambridge U. Press, 2009 (cit. on pp. 3, 32).
[23] P. S. Hovmand. Community Based System Dynamics. Springer, 2014 (cit. on p. 2).
[24] Minoru Kanehisa et al. “KEGG: biological systems database as a model of the real world”. In: Nu-

cleic Acids Research 53.D1 (2025), pp. D672–D677. doi: https : / /doi .org /10 .1093 /nar /gkae909
(cit. on pp. 2, 35).

[25] Stuart Kauffman. “Homeostasis and differentiation in random genetic control networks”. In: Nature
224.5215 (1969), pp. 177–178. doi: https://doi.org/10.1038/224177a0 (cit. on p. 2).

[26] Daniel H. Kim and Virginia Anderson. Systems Archetype Basics. Pegasus Communications Inc,
1998 (cit. on p. 35).

https://doi.org/10.32408/compositionality-6-2
https://arxiv.org/abs/2301.01445
https://doi.org/10.4204/eptcs.380.5
https://doi.org/10.4204/eptcs.380.5
https://arxiv.org/abs/1911.04630
https://doi.org/10.32408/compositionality-4-3
https://arxiv.org/abs/2101.09363
https://doi.org/10.1017/s0960129520000043
https://arxiv.org/abs/1808.05415
https://doi.org/https://doi.org/10.1007/978-3-031-40805-2
https://arxiv.org/abs/2211.01290
https://catcolab.org/help/theory/causal-loop
https://catcolab.org/help/theory/causal-loop-delays
https://catcolab.org/help/theory/indeterminate-causal-loop
https://catcolab.org/help/theory/indeterminate-causal-loop
https://arxiv.org/abs/2410.18024
https://arxiv.org/abs/2008.02394
https://arxiv.org/abs/1609.05382
https://doi.org/https://doi.org/10.1093/nar/gkae909
https://doi.org/https://doi.org/10.1038/224177a0

REFERENCES 37

[27] Edda Klipp et al. Systems Biology: a Textbook. John Wiley & Sons, 2016 (cit. on p. 2).
[28] Anders Kock. “Closed categories generated by commutative monads”. In: Journal of the Australian

Mathematical Society 12.4 (1971), pp. 405–424. doi: doi : 10 . 1017 /S1446788700010272 (cit. on
p. 27).

[29] Yves Lafont and A Proute. “Church-Rosser property and homology of monoids”. In: Math. Struct.
Comp. Sci. 1 (3 1991), pp. 297–326. doi: doi:10.1017/S096012950000133X (cit. on p. 36).

[30] Nicolas Le Novère et al. “The Systems Biology Graphical Notation”. In: Nature Biotechnology 27.8
(Aug. 2009), pp. 735–741. doi: 10.1038/nbt.1558 (cit. on p. 2).

[31] Martina Lembani et al. “Understanding key drivers of performance in the provision of maternal
health services in eastern cape, South Africa: a systems analysis using group model building”. In:
BMC Health Services Research 18 (2018), pp. 1–12. doi: https://doi.org/10.1186/ (cit. on p. 1).

[32] Fosco Loregian and Emily Riehl. “Categorical notions of fibration”. In: Expositiones Mathematicae
38.4 (2020), pp. 496–514. doi: https://doi.org/10.1016/j.exmath.2019.02.004. arXiv: 1806.0612
(cit. on pp. 5, 6).

[33] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduction to
Topos Theory. Springer, 2012 (cit. on p. 6).

[34] William S. Massey. Singular Homology Theory. Springer, 1980 (cit. on p. 27).
[35] Jade Master. “Composing Behaviors of Networks”. PhD thesis. U. C. Riverside, 2021. arXiv: 2105.

12905 (cit. on p. 17).
[36] Jade Master. The open algebraic path problem. 2021. arXiv: 2005.06682 (cit. on p. 17).
[37] José Meseguer and Ugo Montanari. “Petri nets are monoids”. In: Information and Computation 88.2

(1990), pp. 105–155 (cit. on p. 27).
[38] Huaiyu Mi et al. “Systems Biology Graphical Notation: Activity Flow Language Level 1 Version

1.2”. In: Journal of Integrative Bioinformatics 12.2 (Sept. 2015), p. 265. doi: 10.2390/biecoll- jib-
2015-265 (cit. on p. 2).

[39] ModelCollab. url: https://modelcollab.usask.ca/ (cit. on p. 35).
[40] Pathguide: the pathway resource list. url: http://pathguide.org/ (cit. on p. 35).
[41] Evan Patterson. “Structured and decorated cospans from the viewpoint of double category theory”.

In: Electronic Proceedings in Theoretical Computer Science 397 (2023), pp. 210–225. doi: 10.4204/
eptcs.397.13. arXiv: 2304.00447 (cit. on pp. 18, 20, 21).

[42] Adrien Rougny et al. “Systems Biology Graphical Notation: Process Description Language Level 1
Version 2.0”. In: Journal of Integrative Bioinformatics 16.2 (June 2019). doi: 10.1515/jib-2019-0022
(cit. on p. 2).

[43] Christopher Sooka and Agnes Rwashana-Semwanga. “Modeling the dynamics of maternal healthcare
in Uganda: a system dynamics approach”. In: World Journal of Modeling and Simulation 7 (2011),
pp. 163–172 (cit. on p. 1).

[44] Anatoly Sorokin et al. “Systems Biology Graphical Notation: Entity Relationship Language Level 1
Version 2”. In: Journal of Integrative Bioinformatics 12.2 (Sept. 2015), p. 264. doi: 10.2390/biecoll-
jib-2015-264 (cit. on p. 2).

[45] John D. Sterman. Business Dynamics. McGraw-Hill, Inc., 2000 (cit. on p. 2).
[46] John D. Sterman. System Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-

Hill, 2002 (cit. on pp. 7, 35).
[47] StockFlow.jl. url: https://github.com/AlgebraicJulia/StockFlow.jl (cit. on p. 35).
[48] John J. Tyson and Béla Novák. “Functional motifs in biochemical reaction networks”. In: Annual

Review of Physical Chemistry 61.1 (2010), pp. 219–240 (cit. on p. 12).

https://doi.org/doi:10.1017/S1446788700010272
https://doi.org/doi:10.1017/S096012950000133X
https://doi.org/10.1038/nbt.1558
https://doi.org/https://doi.org/10.1186/
https://doi.org/https://doi.org/10.1016/j.exmath.2019.02.004
https://arxiv.org/abs/1806.0612
https://arxiv.org/abs/2105.12905
https://arxiv.org/abs/2105.12905
https://arxiv.org/abs/2005.06682
https://doi.org/10.2390/biecoll-jib-2015-265
https://doi.org/10.2390/biecoll-jib-2015-265
https://modelcollab.usask.ca/
http://pathguide.org/
https://doi.org/10.4204/eptcs.397.13
https://doi.org/10.4204/eptcs.397.13
https://arxiv.org/abs/2304.00447
https://doi.org/10.1515/jib-2019-0022
https://doi.org/10.2390/biecoll-jib-2015-264
https://doi.org/10.2390/biecoll-jib-2015-264
https://github.com/AlgebraicJulia/StockFlow.jl

	1. Introduction
	Acknowledgements
	Notation

	2. Set-labeled graphs
	3. Monoid-labeled graphs
	4. Motifs in monoid-labeled graphs
	5. Commutative monoid-labeled graphs
	6. Rig-labeled graphs
	7. Open labeled graphs
	8. Feedback loops and homology
	9. Emergent feedback loops
	10. Conclusion
	References

