
Probabilities versus Amplitudes
John Baez, Jacob Biamonte and Brendan Fong

for more, see:
http://math.ucr.edu/home/baez/networks/



The usual picture:



A different picture:

It doesn’t contradict the other; it’s just another outlook.



Suppose we have a system with n possibilities:

X = {1, . . . ,n}

In quantum theory we consider quantum states:

ψ : X → C

with ∑
i∈X

|ψi |2 = 1

In probability theory we consider stochastic states:

ψ : X → R

with ∑
i∈X

ψi = 1 and ψi ≥ 0



An operator U : Cn → Cn that sends quantum states to
quantum states is called unitary.

An operator U : Rn → Rn that sends stochastic states to
stochastic states is called stochastic.

Concretely, U is stochastic iff∑
i

Uij = 1 and Uij ≥ 0



An operator H : Cn → Cn for which exp(−itH) is unitary for all
t ∈ R is called self-adjoint.

An operator H : Rn → Rn for which exp(tH) is stochastic for all
t ∈ [0,∞) is called infinitesimal stochastic.

Concretely, H is infinitesimal stochastic iff∑
i

Hij = 0 and Hij ≥ 0 if i 6= j



If H is self-adjoint, we can describe time evolution of quantum
states using Schrödinger’s equation:

d
dt
ψ(t) = −iHψ(t)

If H is infinitesimal stochastic, we can describe time evolultion
of stochastic states using the master equation:

d
dt
ψ(t) = Hψ(t)

Unitary operators have unitary inverses; stochastic operators
rarely have stochastic inverses! So, we only evolve forwards in
time in stochastic physics.



Some operators are both self-adjoint and infinitesimal
stochastic. The most famous example is the Laplacian.
However, the overlap here is small:

So, the main use of this picture is to pass ideas from quantum
theory to probability theory, or vice versa.



Suppose ψn is the probability of having n amoebas in a test
tube. We can summarize this information in a power series:

Ψ(z) =
∞∑

n=0

ψnzn

The creation operator a† creates an amoeba:

a†Ψ = zΨ

The annihilation operator a destroys one:

aΨ =
d
dz

Ψ

We have azn = nzn−1 since there are n amoebas to choose
from.



We’re used to

aa† − a†a = 1

for indistinguishable bosons. Can this be right for classical
objects if we use probabilities instead of amplitudes?

Yes! There’s one more way to create an amoeba and then kill
one, than to kill one and then create one.

But let’s try some examples.



We would like a Hamiltonian for a process that destroys k
amoebas and creates j of them:

The obvious guess is a†jak . But this is not infinitesimal
stochastic! The right answer has a ‘correction term’:

a†
j
ak − a†

k
ak



H = a† − 1 describes the random ‘creation’ of amoebas. The
master equation

d
dt

Ψ(t) = HΨ(t)

has this solution:

Ψ(t) = et(z−1)Ψ(0)

If we start with the ‘vacuum state’ Ψ(0) = 1, where there are no
amoebas, at time t we have

Ψ(t) = et(z−1) = e−t
∑

n

tn

n!
zn

so the probability of having n amoebas is e−t tn

n! . This is just
what we expect: a Poisson process.



H = a− a†a describes the random ‘annihilation’ of amoebas.

Using this Hamiltonian, the master equation predicts that the
expected number of amoebas decays exponentially. Again, this
is just right.



A more interesting example combines fission and competition:

H = α(a†
2
a− a†a) + β(a†a2 − a†

2
a2)



Here we can show that in the ‘classical limit’ where ψn is very
sharply peaked near some very large number, the expected
number of amoebas:

〈N(t)〉 =
∑

n

nψn(t)

obeys the logistic equation:

d
dt
〈N(t)〉 = α〈N(t)〉 − β〈N(t)〉2



In fact, for any Hamiltonian that’s a linear combination of terms
like this:

a†jak − a†kak

it is easy to write a differential equation describing how the
expected number of particles 〈N(t)〉 changes with time in the
classical limit. This is called the rate equation.



Moreover, one can always express the time evolution operator
exp(tH) as a sum over Feynman diagrams:



In some ways stochastic mechanics works ‘better’ than
quantum mechanics. It might seem hard to find a stationary
state

HΨ = 0

for our Hamiltonian

H = α(a†
2
a− a†a) + β(a†a2 − a†

2
a2)

describing amoeba reproduction and competition. But we can
do it using the Anderson–Craciun–Kurtz theorem. This applies
to a large class of Hamiltonians of the sort we’re considering.



First, find a stationary solution of the rate equation:

d
dt
〈N(t)〉 = α〈N(t)〉 − β〈N(t)〉2

This is easy:

α〈N(t)〉 − β〈N(t)〉2 = 0

〈N(t)〉 = α/β

Then, form the ‘coherent state’ where the expected number of
amoebas takes this value:

Ψ(z) =
e(α/β)z

eα/β
=

1
eα/β

∞∑
n=0

(α/β)n

n!
zn

This has

HΨ = 0



All these ideas generalize to situations with more than one type
of particle, e.g. chemical reactions treated stochastically:

H2O ↔ H+ + OH−

H+ + H2O ↔ H3O+

H2O2 → 2H2O + O2

with different chemical species (molecules and ions) as our
types of particle.

Indeed, the Anderson–Craciun–Kurtz theorem was first proved
by experts on chemistry, who did not know their work could be
interpreted in terms of annihilation and creation operators!

Now we have a proof using operators.



Stochastic models with several species also show up in biology:



These ideas generalize straightforwardly to stochastic field
theory, where particles also have locations, e.g. on a lattice.
Stochastic field theory is also increasingly important in
population biology:

From ‘Beyond the mean field in host-pathogen spatial ecology’
by Stacey, Gros and Bar-Yam.
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