Light! Functors! Action!

Jeff Morton

October 15, 2004

1. We understand the real numbers to be $(\mathbb{R},+)$, the additive group of reals, interpreted as a category in the usual way for groups (each real number gives a morphism, and composition is addition). In this case, to be a functor, the $\operatorname{map} S: \gamma \mapsto \int_{\gamma} A$ should be additive: if $\gamma_{1}:\left[0, T_{1}\right] \rightarrow X$ and $\gamma_{2}:\left[0, T_{2}\right] \rightarrow X$ are Moore paths, then:

$$
\begin{aligned}
S\left(\gamma_{1} \gamma_{2}\right) & =\int_{\gamma_{1} \gamma_{2}} A \\
& =\int_{\gamma_{1}} A+\int_{\gamma_{2}} A \\
& =S\left(\gamma_{1}\right)+S\left(\gamma_{2}\right)
\end{aligned}
$$

This is so since the integral along $\gamma_{1} \gamma_{2}$, we have two pieces, one of which is the integral along γ_{1} and the other the integral along γ_{2}, since integration is independent of parametrization, and linear. Moreover, the integral along the zero path is zero, so $S\left(\operatorname{Id}_{x}\right)=0=\operatorname{Id}_{\mathbb{R}}$. These two properties mean that S is a functor.
2. We have a 1-form $\alpha_{x}: T_{x}\left(T^{*} M\right) \rightarrow \mathbb{R}$ taking a vector v, in the tangent space to the cotangent bundle at some point $x=(q, p)$, to $p(\mathrm{~d} \pi(v))$ (i.e. applying the momentum covector p to the image of the vector v pushed forward along the projection map onto M). We want to show that, in terms of the coordinates x_{i} and the induced coordinates on the cotangent bundle, this amounts to $\alpha=\sum_{i} p^{i} \mathrm{~d} q_{i}$. Consider the effect of this 1 -form on the (generic) vector v :

$$
\begin{array}{rlrl}
\left(\sum_{i} p^{i} \mathrm{~d} q_{i}\right)(v) & =\sum_{i} p\left(\frac{\partial}{\partial x_{i}}\right) \mathrm{d} q_{i}(v) & \\
& =\sum_{i} p\left(\frac{\partial}{\partial x_{i}}\right) v\left(x_{i}(q)\right) & & \text { (by definition of } \left.p^{i}, q_{i}, \text { and } \mathrm{d}\right) \\
& =v\left(\sum_{i} p\left(\frac{\partial}{\partial x_{i}}\right) x_{i}(q)\right) & & (\text { by linearity of } v)
\end{array}
$$

so that we have

$$
\sum_{i} p^{i} \mathrm{~d} q_{i}=\sum_{i} p\left(\frac{\partial}{\partial x_{i}}\right) x_{i}(q)
$$

But this (real) number is just the representation in the basis given by the $\frac{\partial}{\partial x_{i}}$ vectors of the effect of p on the part of v in the subspace of $T_{x}\left(T^{*} M\right)$ corresponding to the position coordinates on M.

Now, $p(\mathrm{~d} \pi(v))$ is a real number which arises by taking a tangent vector v to $T^{*} M$ and projecting by the differential of π to a tangent vector to M (i.e. if the tangent vector v corresponds to differentiation along a curve, then $\mathrm{d} \pi(v)$ corresponds to differentiation along the projection onto M) and then applying p. This is just the same as the description just given for $\sum_{i} p^{i} \mathrm{~d} q_{i}$. So in fact, as we wanted, $\alpha=\sum_{i} p^{i} \mathrm{~d} q_{i}$.
3. We have that $\alpha=p^{i} \mathrm{~d} q_{i}$ (now using the Einstein convention), so if $\omega=\mathrm{d} \alpha$, we have

$$
\begin{array}{rlrl}
\omega & =\mathrm{d} \alpha \\
& =\mathrm{d}\left(p^{i} \mathrm{~d} q_{i}\right) & & \\
& =\mathrm{d} p^{i} \wedge \mathrm{~d} q_{i}+p^{i} \wedge \mathrm{~d}\left(\mathrm{~d} q_{i}\right) & & (\text { Leibniz rule for } \mathrm{d}) \\
& =\mathrm{d} p^{i} \wedge \mathrm{~d} q_{i} & & \left(\mathrm{~d}^{2}=0\right)
\end{array}
$$

(note that in each case, here, we actually have a sum over i, where these terms appear for each i).
4. Supposing we have a disc D with boundary γ. Then the action for γ is $S(\gamma)=\int_{\gamma} \alpha$. But by Stokes' Theorem,

$$
S(\gamma)=\int_{\gamma} \alpha=\int_{\partial D} \alpha=\int_{D} \mathrm{~d} \alpha=\int_{D} \omega
$$

