Action as a functor

Miguel Carrión Álvarez
2004 October 14

1. Connections as functors.

The functor S must map $\gamma: p \rightarrow q$ to $S(\gamma): S(p) \rightarrow S(q)$, where $S(p)$ and $S(q)$ are objects in \mathbf{R}. But \mathbf{R} is a category with one object only, so $S(p)=S(q)=\bullet$ and the functor S is uniquely determined by

$$
S(\gamma)=\int_{\gamma} A
$$

To see that this is a functor, one need only recall from differential geometry that

$$
\int_{\gamma \circ \gamma^{\prime}} A=\int_{\gamma} A+\int_{\gamma^{\prime}} A .
$$

[Thanks to Derek for pointing out that the point of this exercise is the triviality of the object map.]
2. The symplectic potential in local coordinates.

I prefer the notation $p_{q} \in T_{p}^{*} M \subseteq T^{*} M$ rather than (q, p). The coordinate functions q_{i} and p^{i} on $T^{*} M$ are such that

$$
q_{i}\left(p_{q}\right)=x_{i}(q), \quad \text { and } \quad p^{i}\left(p_{q}\right)=p_{q}\left(\left.\frac{\partial}{\partial x_{i}}\right|_{q}\right)
$$

A tangent vector $v_{x} \in T(T * M)$, where $x=p_{q} \in T^{*} M$ (beware of the unfortunate clash of notations between $x \in T^{*} M$ and $\left.x_{i}: M \rightarrow \mathbf{R}\right)$, is of the form

$$
v_{x}=\left.v_{i} \frac{\partial}{\partial q_{i}}\right|_{x}+\left.v^{j} \frac{\partial}{\partial p^{j}}\right|_{x}
$$

The map $d \pi: T\left(T^{*} M\right) \rightarrow T M$ maps $T_{x}\left(T^{*} M\right) \rightarrow T_{\pi(x)} M$, and its differential, and in fact

$$
d \pi(v)=\left.v^{i} \frac{\partial}{\partial x_{i}}\right|_{\pi(x)}
$$

By definition of p^{i} and of v, then,

$$
\alpha(v)=\sum_{i} p^{i} v_{i}=\sum_{i} p^{i} d q^{i}(v)
$$

3. The symplectic structure.

The exterior derivative of

$$
\alpha=p^{i} d q_{i}
$$

is

$$
d \alpha=d p^{i} \wedge d q_{i}
$$

4. The action as phase-space area.

By the generalized Stokes' theorem, if $\gamma=\partial D$,

$$
S(\gamma)=\oint_{\gamma} \alpha=\oint_{\partial D} \alpha=\int_{D} d \alpha=\int_{D} \omega
$$

