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In class I said some mysterious things about how the electromagnetic field is a U(1) connection on
spacetime, while the Feynman path integral involves a U(1) connection on the cotangent bundle of
spacetime. Let’s clarify this a little.

Given a smooth manifold X, let P(X) be the category of paths in X. There are lots of different
ways to make this precise. I sketched one in class; here’s another, where the interval parametrizing
the paths can be of arbitrary length. Such paths are called ‘Moore paths’, but they may actually have
been introduced by the topologist R. L. Moore.

The objects of P(X) are points of X. A morphism in P(X), say γ: x → y, is a piecewise smooth
path γ: [0, T ] → X with

γ(0) = x, γ(T ) = y,

where T ≥ 0 is arbitrary. The composite of a path γ1: [0, T1] → X and a path γ2: [0, T2] → X is a
path γ1γ2: [0, T1 + T2] → X, defined in the obvious way:

(γ1γ2)(t) =

{

γ1(t) 0 ≤ t ≤ T1

γ2(t − T1) T1 ≤ t ≤ T1 + T2

It’s easy to check the associative law and left/right unit laws with this definition, where the identity
path 1x is the path γ: [0, 0] → X with γ(0) = x.

Now let us see how a 1-form on X defines a notion of R-valued or U(1)-valued parallel transport.
To do this, we think of the groups R and U(1) as 1-object categories with all morphisms invertible.

1. Suppose that A is a smooth 1-form on X . Show that there’s a unique functor

S:P(X) → R

with

S(γ) =

∫

γ

A

for any morphism γ of P(X).

Note that the definition of
∫

is

∫

γ

A =

∫ T

0

〈A(γ(t))|γ′(t)〉 dt.

(I’m using kets for tangent vectors and bras for cotangent vectors.) Now, to be a functor, I must
have S(1x) = 0 and S(γ1γ2) = S(γ1) + S(γ2). Indeed,

S(1x) =

∫

1x

A =

∫ 0

0

whatever dt = 0.

Also,

S(γ1γ2) =

∫

γ1γ2

A =

∫ T1+T2

0

〈A((γ1γ2)(t))|(γ1γ2)
′(t)〉 dt
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=

∫ T1

0

〈A(γ1(t))|γ
′

1(t)〉 dt +

∫ T1+T2

T1

〈A(γ2(t − T1))|γ
′

2(t − T1)〉
d(t − T1)

dt
dt

=

∫ T1

0

〈A(γ1(t))|γ
′

1(t)〉 dt +

∫ T2

0

〈A(γ2(t))|γ
′

2(t)〉 dt

=

∫

γ1

A +

∫

γ2

A = S(γ1) + S(γ2).

Therefore, this is indeed a functor. (Note that in this calculation, it is irrelevant that d(t−T1)
dt

= 1.
This expression appears from differentiating γ1γ2, and it disappears in the integral’s change of
variable. Any smooth parametrisation would do the same.)

In the last homework you saw that group homomorphisms are actually functors. Thus, we can
compose the above functor S with the homomorphism t 7→ exp(it) from R to U(1) to get a functor
from P(X) to U(1). Let’s call this functor

eiS :P(M) → U(1).

Next, let’s show that whenever M is a smooth manifold, the cotangent bundle T ∗M has a god-
given smooth 1-form on it. This is called the tautologous 1-form or symplectic potential, and
denoted by α.

Recall that T ∗M is the manifold whose points are pairs (q, p) where q ∈ M and p ∈ T ∗

q M is a
cotangent vector at q, that is, a linear functional p: TqM → R where TqM is the tangent space
of M at q. The manifold T ∗M becomes a vector bundle over M with projection

π: T ∗M → M

(q, p) 7→ q

It is then called the cotangent bundle of M .

To define a 1-form α on T ∗M , all we need is a a linear functional αx on the tangent space of each
point x ∈ T ∗M . If x = (q, p) as above, this is given by

αx: Tx(T ∗M) → R

v 7→ p(dπ(v))

Sneaky, huh? You should ponder this carefully until you get it.

To understand α better, let’s work out a formula for it in terms of local coordinates on T ∗M coming
from local coordinates on M .

Suppose U ⊆ M is an open set in M equipped with coordinate functions xi: U → R. Then the open
set T ∗U ⊆ T ∗M gets coordinates qi, p

i: T ∗U → R where for any point (q, p) ∈ T ∗M ,

qi(q, p) = xi(q)

pi(q, p) = p( ∂
∂xi

).

Here ∂
∂xi

is the tangent vector at q ∈ M pointing in the xi direction.

2. In terms of the above coordinates, show that on T ∗U we have

α =
∑

i

pidqi



First notice that

∑

i

pi(q, p)

〈

dxi(q)

∣

∣

∣

∣

∂

∂xj

(q)

〉

=
∑

i

pi(q, p)δj
i = pj(q, p) =

〈

p

∣

∣

∣

∣

∂

∂x j
(q)

〉

.

Since the vectors | ∂
∂xj

(q)〉 form a basis for Tq(M), this proves that 〈p| =
∑

i pi(q, p) 〈dxi(q)|. Next,

notice that qi = xi ◦ π. Thus, dqi = dxi ◦ dπ, or 〈dqi(q, p)| = 〈dxi(q)|dπ(q, p)|. Putting these facts
together,

〈α(q, p)|v〉 = 〈p|dπ(q, p)|v〉 =
∑

i

pi(q, p) 〈dxi(q)|dπ(q, p)|v〉 =
∑

i

pi(q, p) 〈dqi(q, p)|v〉 .

Therefore, 〈α(q, p)| =
∑

i pi(q, p) 〈dqi(q, p)|, or simply α =
∑

i pi dqi.

If we use the Einstein summation convention, which says we always sum over indices that
appear twice, once as a superscript and once as a subscript, we can abbreviate the above formula as:

α = pidqi.

In case you were wondering, this is why we write the index on pi as a superscript.

As a consequence of 1 and 2, we see there is a god-given functor

S:P(T ∗M) → R

given by

S(γ) =

∫

γ

α

for any piecewise smooth path in T ∗M . We call S(γ) the action of the path γ. We also get a
functor

eiS :P(T ∗M) → U(1).

In physics we can apply these ideas by letting M be the configuration space of a classical system,
that is, the space of possible positions of the system. Then T ∗M becomes the phase space, that is,
the space of possible states of the system. For a state (q, p) ∈ T ∗M , we call q ∈ M the position

and p ∈ T ∗

q M the momentum.

The functor S then assigns to any path in phase space a real number called its action. The functor
eiS assigns to any path a phase; this becomes important in the path-integral approach to quantum
mechanics.

The phase space T ∗M also has a god-given 2-form on it, given by

ω = dα

This is called the symplectic structure.

3. Using the Einstein summation convention, show that on T ∗U we have

ω = dpi ∧ dqi

in terms of the previously described coordinates pi, qi.

Since d is linear, it’s safe to use the Einstein summation convention throughout the calculation:

ω = dα = d(pi dqi) = dpi ∧ dqi + pi ddqi = dpi ∧ dqi + pi0 = dpi ∧ dqi.



A path is called a loop if it starts where it ends. The action of a loop in phase space is the integral
of the symplectic structure over any disk having that loop as its boundary:

4. Suppose that γ is a loop in T ∗M . Suppose D is a disk in T ∗M whose boundary is γ. Show that

S(γ) =

∫

D

ω.

Since γ is the boundary of D, apply the Stokes theorem:

S(γ) =

∫

γ

α =

∫

∂D

α =

∫

D

dα =

∫

D

ω.

In an early stage of quantum mechanics Bohr and Sommerfeld thought that the ‘energy eigenstates’
of a quantum system corresponded to the periodic motions of the corresponding classical system in
which it traced out a loop γ in phase space for which S(γ) was a multiple of 2π, and thus eiS(γ) = 1.
This is a bit oversimplified, but it’s still a useful idea.

Another application of these ideas to physics arises when we let M be spacetime. If a particle traces
out a path in spacetime, say γ: [0, T ] → M , the laws governing this particle let us ‘lift’ this path to
T ∗M . In other words, they give us a formula for a path γ̃: [0, T ] → T ∗M such that π(γ̃(t)) = γ(t).
To be kind, I will omit this formula. The point, however, is that we can then define the action of
the path γ to be

S(γ) =

∫

γ̃

α.

If the particle has electric charge c and there is an electromagnetic field on spacetime, the formula
for its action gets a bit fancier. An electromagnetic field is described by a 1-form A on the spacetime
M . If the particle traces out a path γ: [0, T ] → M in spacetime, its action is then defined to be

S(γ) =

∫

γ̃

α + c

∫

γ

A.

Here we see the electromagnetic field on spacetime and the symplectic potential on the cotangent
bundle of spacetime showing up in the same formula!


