Derek Wise October 7, 2004 Quantum Gravity Seminar HW #1 — Groups as Categories

In what follows, by **group** I always mean a group in the categorical sense: A group is a groupoid with one object. I use the traditional backward order of composition: fg means first g then f.

- 1. Let G and H be groups. A functor $F: G \to H$ is boring as an object map, so the only essential property of F is that F(fg) = F(f)F(g) for any morphisms $f, g \in \text{hom}_G(*, *)$. (The other property, preservation of identities, is easily derived from this one in the case of groups. This would not be the case if G and H were mere monoids.) Such a functor is usually called a **group homomorphism**.
- 2. Let $F, F': G \to H$ functors between groups. Since G has only one object, *, and H has only one object, \bullet , a natural transformation is just a morphism $\alpha_*: \bullet \to \bullet$ in H, such that for any morphism g in G, we have $F'(g)\alpha_* = \alpha_*F(g)$.
- 3. Let $1_G: G \to G$ be the identity functor on the group G, and $\alpha: 1_G \Rightarrow 1_G$ a natural transformation. This is just a morphism α in G such that for any morphism g in G we have $g\alpha = \alpha g$. The set of all such natural transformations is usually called the **center** of G.
- 4. If G is a group with object *, a functor $F:G \to \text{Vect}$ amounts to a choice of a vector space V = F(*) and for each morphism g in G a linear transformation $F(g):V \to V$, such that F(gh) = F(g)F(h) for any two morphisms $f,g:*\to *$, and $F(1_*)=1_V$. Better yet, we can consider a functor $F:G \to \text{Vect}_0$. The groupoid Vect_0 has a full subcategory GL(V) whose only object is V = F(*), so we can consider F to be a group homomorphism $F:G \to \text{GL}(V)$ in other words, a **representation** of G on V.
- 5. Suppose $F, F': G \to \text{Vect}$ are representations of a group G with object *. If we write V = F(*) and V' = F'(*), a natural transformation $\alpha: F \Rightarrow F$ is a linear map $\alpha_*: V \to V'$ such that $F'(f)\alpha_* = \alpha_* F(f)$. So, such a natural transformation is just an **intertwiner**.