1. Homomorphisms as functors.

A functor $F: G \to H$ is such that $F(g: x \to y): F(x) \to F(y)$, compatible with composition

$$F(g_1: x \to y) \circ F(g_2: y \to z) = F(g_1 \circ g_2: x \to z): F(x) \to F(z)$$

If G, H are groupoids with one object,

$$F(g_1) \circ F(g_2) = F(g_1 \circ g_2)$$

which means F is a homomorphism from the morphism group of G to that of H. Conversely, any group homomorphism defines a functor.

2. Conjugation as a natural transformation.

A natural transformation α between functors $F_1, F_2: G \to H$ assigns an endomorphism $\alpha_x: F_1(x) \to F_2(x)$ to each object x of G in such a way that that, for every $g: x \to y$ in $G, \alpha_x F_2(g) = F_1(g)\alpha_y$ in H.

If G and H are groupoids with a single object, a natural transformation between group homomorphisms F and G is a single group element $\alpha \in H$ such that

$$\alpha F_2(g) = F_1(g)\alpha \quad \text{for all} \quad g \in G,$$

that is, $F_1(g)$ is the result of conjugating $F_2(g)$ by $\alpha \in H$.

3. The center as the natural automorphisms of the unit.

If, now, $F_1 = F_2 = 1_G : G \to G$, a natural transformation $\alpha : F_1 \Rightarrow F_2$ is a group element $\alpha \in G$ satisfying

$$\alpha g = g \alpha$$
 for all $g \in G$,

that is, α is in the center of the group G.

4. Group representations as functors.

If G is a groupoid with one object, a functor $F: F \to \text{Vect}$ is a choice of a vector space $V = F(\bullet)$ and a group homomorphism $F: G \to \text{End}(V)$. In other words, F is a representation of the group G.

5. Intertwiners as natural transformations.

Suppose that F, F' are two representations of the group G. Then, a natural transformation $\alpha: F \Rightarrow F'$ is a linear map $\alpha: V \to V'$ such that

$$\alpha F'(g) = F(g)\alpha$$
 for all $g \in G$.

The map α is called an intertwining operator between the representations F and F'.