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In this homework we’ll see how a vector bundle E equipped with a connection over a manifold X
gives a functor
F:P(X) — Vect

where P(X) is the category of paths in X, defined in the last homework. Recall that objects of P(X)
are points of X, while morphisms are piecewise-smooth paths in X. The functor F maps each point
x € X to the the fiber of E over the point x. Similarly, F maps each path ~v:x — y in X to a linear

operator
F(y): F(z) — F(y)

defined using parallel transport along the path ~y.

To warm up, let’s see how any linear ordinary differential equation gives a functor. I’ll let you use
this fact:

Theorem 1. Let End(R™) be the algebra of linear operators from R™ to itself. Suppose A:la,b] —
End(R™) is any smooth function and ty € [a,b]. Given any vector 1y € V, the differential equation

dy(t) _
L5 = Awu() (1)

has a unique smooth solution :[a,b] — R™ with ¢ (ty) = 1.

Sketch of Proof. With the given initial conditions, Equation (1) is equivalent to the integral

equation
¢

Y(t) =vo+ | Als)(s)ds.
to
A solution of this equation is none other than a fixed point of the map T sending the function v to

the function T given by
t

(T)(t) = o+ | A(s)¥(s)ds.
to
T maps the Banach space of continuous R™-valued functions on [a,b] to itself. If fab |A(s)||ds = M
then

1T (3p1) — T'(2)|] < M||3p1 — 2l

We call a map with this property a contraction if M < 1. An easy argument shows that any
contraction on a Banach space has a unique fived point, so our equation has a unique solution. If
M &£ 1, we can chop the interval [a,b] into smaller intervals for which this bound does hold, and
prove the theorem one piece at a time. a

1. Let K[a,b] be the category whose objects are points of the interval [a, b], with exactly one mor-
phism from any object to any other. Given a function A: [a,b] — End(R"™) satisfying the conditions
of Theorem 1, use the theorem to prove there is a unique functor

F: Kla,b] — Vect

such that:
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e [ sends any object to R™.

e F sends any morphism f:tg — t1 to the linear operator

Yo > P(t)
where v [a, b] — R™ is the unique solution of Equation (1) with ¢ (tg) = .

F' is uniquely defined by Theorem 1. (In fact, I can say more explicitly that

F(f)=Pexp ! A(t)dt

to

where P exp is the path-ordered exponential; this is because

t / /
b(t) Z'Pefto A(t') dt o

is a solution to Equation (1) with ¢(0) = . Just differentiate it to check.) The only question is
whether this F' is a functor.

First, if f:to — t1 in K[a,b], then F(f):R" — R™ = F(ty) — F(t1) in Vect, so F takes values
of the proper types.

Next, if f:tg — to is an identity in K|a,b], then F(f)o = ¥ (to) = o, so that F(f) is an identity
in Vect. (In terms of the exponential formula for F, F(f) = Pexp fOO A(t)dt =Pexp0=1.)

Fmally, if fllto — t and fQItl — tg, then F(f1f2)¢0 = ¢(t2) where ’(/) is the solution of
Equation (1) with ¢ (tg) = to. Meanwhile, F(f1)o = 1(t1) for the same 1; let 11 be this ¥(t1).
Now notice that v is also the solution of Equation (1) with ¥(t1) = 1. Thus, F(f2)11 = ¥(t2).
Summing up,

F(fifo)vo = ¢(t2) = F(f2)r = F(f2)F (f1)vo.
In other words, F(f1f2) = F(f2)F(f1). (In terms of the exponential formula for F,

F(fs fa) = Pe tff A(tydt _ Pef:f A(t)dt + ftt; Aty dt _ A dip,, tfj A(tydt _ FU) ().

Note that the equation eA2t41 = e42¢41 is not always valid for Ay, Ay € End(R™); this is why we
need path-ordered exponentials instead of plain old exponentials in this problem.)
Therefore, F is indeed a functor.

More poetically, Kla,b] is the category whose objects are moments of time between time a and
time b. The morphisms in this category are passages of time. Applied to the passage of time from
tg to t1, the functor F gives the time evolution operator mapping ¥(tg) to ¥(t1), where 9 is

any solution of
W — A,
Next, suppose X is a smooth manifold and A is a smooth End(R"™)-valued 1-form on X. For each
point x € X, such a thing gives a linear map
Ay Ty X — End(R"™),

and Ay varies smoothly as a function of x. If we take n = 1, A becomes an ordinary I1-form and
the following result reduces to a problem in the last homework assignment:



2. Suppose A is a smooth End(R"™)-valued 1-form on the manifold X. Show that there is a unique
functor
F:P(X) — Vect

such that
e F sends any point of X to R™.

e F sends any piecewise-smooth path 7:[0,7] — X to the linear operator

Yo — (1)
where v: [0, 7] — R™ is the unique solution of the equation

W — 0 ) vl ©)

with 1(0) = 1.

Note that for a given v, Equation (2) is simply Equation (1) with [a,b] replaced by [0,T] and A(t)
replaced by A.)(7'(t)). Thus, F(y) is uniquely defined, by Theorem 1. (Again, there is a formula:

T
F(y) = ’Pexp/ Ay (Y (1) dt = Pexp/ A.
0 2l

Thus, the n = 1 case is related to Exercise 1 in the previous homework assignment through the
group homomorphism exp: R — R* = End(R') — Aut(R!).) In the previous assignment we did not
need path-ordered exponentials, because End(R!) is commutative.

Now, if yv:x — y in P(X), then F(v):R" — R" = F(x) — F(y) in Vect, so again F' takes values
of the proper types.

Next, if v: x — x is the identity path on x, then F(v)o = ¥(T) = ¥(0) = g, so that F(v) is the
identity operator on R™. (In terms of the exponential formula for F, F'(1,) = exp fOO whatever dt =
exp0=1.)

Finally, if v1:x — y and ~2:y — 2z, then F(y172)vo = ¢¥(T1 + 1), where v is the solution
of Equation (2) with 1(0) = 9. Meanwhile, F(y1)o = ¢ (T1) for this same ; let 11 be this
W(Ty). If I translate ¢ by Ty, to get ¢(t) = ¢(T1 +t), then ¢ is the solution to Equation (2) with
¢(0) = y(T1) = ¢1. Thus, F(y2)1 = ¢(T2). Summing up,

F(ny2)to = (11 + Ta) = ¢(T2) = F(y2)ir = F(y2) F (1) vo.
In other words, F(y1v2) = F(y2)F(71). (In terms of the exponential formula for F,

A+ [ A

F(’Yl"m) = ’PefMVz A = ’Pef’Yz = 'Pefw A’Pefﬁ A = F('Y2)F('71)~

Again, the equation e?2t41 = e42¢41 s not valid for Ay, Ay € End(R"); this is why we need
path-ordered exponentials in this problem.)
Therefore, F is indeed a functor.

An End(R"™)-valued 1-form A is called a connection on the trivial vector bundle
mX xR" — X.

If ¥(t) satisfies Equation (2), we say the vector (t) is parallel transported along the path ~y
using the connection A. The linear operator F(v) is called the holonomy of the connection A
along the path ~y.



All this stuff generalizes to the case of a connection on a nontrivial vector bundle
mE— X

except that now the functor F maps each point © € X to the fiber of E over z, namely E, =
7~ Y(x). To handle this case, we choose an open cover of X such that E restricted to each open set
is trivializable, and reduce the problem to the case treated above. After huffing and puffing, we get:

Theorem 2. Suppose A is a smooth connection on a smooth vector bundle m: E — X over a smooth
manifold X. Then there is a unique functor

F:P(X) — Vect
such that:
e For any object x of P(X), F(x) is the fiber of E over .
e For any morphism v:x — y of P(X), F(v) is the holonomy of A along ~.

The converse is not true: there are functors F:P(X) — Vect that don’t come from connections on
vector bundles! However, we can characterize the functors that do by means of three conditions:

o F(y1) = F(v2) when - is obtained by reparametrizing i :
Y2(t) =1 (f(t))

for any monotone increasing function f.

o F(v2) = F(v1)~! when 7y is a reversed version of 71 :

Y2(t) =1 (f(t))
for any monotone decreasing function f.

e F'(v) depends smoothly on v (in a certain precise sense).

For some hints on how to prove this, try:

J. Barrett, Holonomy and path structures in general relativity and Yang—Mills theory,
Int. J. Theor. Phys., 30 (1991), 1171-1215.

If we drop the smoothness condition, we call F' a generalized connection. These play an important
role in loop quantum gravity.



