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In this homework we’ll see how a vector bundle E equipped with a connection over a manifold X

gives a functor
F :P(X) → Vect

where P(X) is the category of paths in X, defined in the last homework. Recall that objects of P(X)
are points of X, while morphisms are piecewise-smooth paths in X. The functor F maps each point
x ∈ X to the the fiber of E over the point x. Similarly, F maps each path γ:x→ y in X to a linear
operator

F (γ):F (x) → F (y)

defined using parallel transport along the path γ.

To warm up, let’s see how any linear ordinary differential equation gives a functor. I’ll let you use
this fact:

Theorem 1. Let End(Rn) be the algebra of linear operators from R
n to itself. Suppose A: [a, b] →

End(Rn) is any smooth function and t0 ∈ [a, b]. Given any vector ψ0 ∈ V , the differential equation

dψ(t)

dt
= A(t)ψ(t) (1)

has a unique smooth solution ψ: [a, b] → R
n with ψ(t0) = ψ0.

Sketch of Proof. With the given initial conditions, Equation (1) is equivalent to the integral
equation

ψ(t) = ψ0 +

∫ t

t0

A(s)ψ(s)ds.

A solution of this equation is none other than a fixed point of the map T sending the function ψ to
the function Tψ given by

(Tψ)(t) = ψ0 +

∫ t

t0

A(s)ψ(s)ds.

T maps the Banach space of continuous R
n-valued functions on [a, b] to itself. If

∫ b

a
‖A(s)‖ds = M

then
‖T (ψ1) − T (ψ2)‖ ≤M‖ψ1 − ψ2‖.

We call a map with this property a contraction if M < 1. An easy argument shows that any
contraction on a Banach space has a unique fixed point, so our equation has a unique solution. If
M 6< 1, we can chop the interval [a, b] into smaller intervals for which this bound does hold, and
prove the theorem one piece at a time. ut

1. Let K[a, b] be the category whose objects are points of the interval [a, b], with exactly one mor-
phism from any object to any other. Given a function A: [a, b] → End(Rn) satisfying the conditions
of Theorem 1, use the theorem to prove there is a unique functor

F :K[a, b] → Vect

such that:
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• F sends any object to R
n.

• F sends any morphism f : t0 → t1 to the linear operator

ψ0 7→ ψ(t1)

where ψ: [a, b] → R
n is the unique solution of Equation (1) with ψ(t0) = ψ0.

F is uniquely defined by Theorem 1. (In fact, I can say more explicitly that

F (f) = P exp

∫ t1

t0

A(t) dt

where P exp is the path-ordered exponential; this is because

ψ(t) = Pe

∫ t

t0
A(t′) dt′

ψ0

is a solution to Equation (1) with ψ(0) = ψ0. Just differentiate it to check.) The only question is
whether this F is a functor.

First, if f : t0 → t1 in K[a, b], then F (f): Rn → R
n = F (t0) → F (t1) in Vect, so F takes values

of the proper types.
Next, if f : t0 → t0 is an identity in K[a, b], then F (f)ψ0 = ψ(t0) = ψ0, so that F (f) is an identity

in Vect. (In terms of the exponential formula for F , F (f) = P exp
∫ 0

0 A(t) dt = P exp 0 = 1.)
Finally, if f1: t0 → t1 and f2: t1 → t2, then F (f1f2)ψ0 = ψ(t2) where ψ is the solution of

Equation (1) with ψ(t0) = ψ0. Meanwhile, F (f1)ψ0 = ψ(t1) for the same ψ; let ψ1 be this ψ(t1).
Now notice that ψ is also the solution of Equation (1) with ψ(t1) = ψ1. Thus, F (f2)ψ1 = ψ(t2).
Summing up,

F (f1f2)ψ0 = ψ(t2) = F (f2)ψ1 = F (f2)F (f1)ψ0.

In other words, F (f1f2) = F (f2)F (f1). (In terms of the exponential formula for F ,

F (f1f2) = Pe

∫ t2

t0
A(t) dt

= Pe

∫ t2

t1
A(t) dt+

∫ t1

t0
A(t) dt

= Pe

∫ t2

t1
A(t) dt

Pe

∫ t1

t0
A(t) dt

= F (f2)F (f1).

Note that the equation eA2+A1 = eA2eA1 is not always valid for A1, A2 ∈ End(Rn); this is why we
need path-ordered exponentials instead of plain old exponentials in this problem.)

Therefore, F is indeed a functor.

More poetically, K[a, b] is the category whose objects are moments of time between time a and
time b. The morphisms in this category are passages of time. Applied to the passage of time from
t0 to t1, the functor F gives the time evolution operator mapping ψ(t0) to ψ(t1), where ψ is
any solution of

dψ(t)

dt
= A(t)ψ(t).

Next, suppose X is a smooth manifold and A is a smooth End(Rn)-valued 1-form on X. For each
point x ∈ X, such a thing gives a linear map

Ax:TxX → End(Rn),

and Ax varies smoothly as a function of x. If we take n = 1, A becomes an ordinary 1-form and
the following result reduces to a problem in the last homework assignment:



2. Suppose A is a smooth End(Rn)-valued 1-form on the manifold X . Show that there is a unique
functor

F :P(X) → Vect

such that

• F sends any point of X to R
n.

• F sends any piecewise-smooth path γ: [0, T ] → X to the linear operator

ψ0 7→ ψ(T )

where ψ: [0, T ] → R
n is the unique solution of the equation

dψ(t)

dt
= Aγ(t)(γ

′(t)) ψ(t) (2)

with ψ(0) = ψ0.

Note that for a given γ, Equation (2) is simply Equation (1) with [a, b] replaced by [0, T ] and A(t)
replaced by Aγ(t)(γ

′(t)). Thus, F (γ) is uniquely defined, by Theorem 1. (Again, there is a formula:

F (γ) = P exp

∫ T

0

Aγ(t)(γ
′(t)) dt = P exp

∫
γ

A.

Thus, the n = 1 case is related to Exercise 1 in the previous homework assignment through the
group homomorphism exp: R → R

× = End(R1) → Aut(R1).) In the previous assignment we did not
need path-ordered exponentials, because End(R1) is commutative.

Now, if γ:x→ y in P(X), then F (γ): Rn → R
n = F (x) → F (y) in Vect, so again F takes values

of the proper types.
Next, if γ:x→ x is the identity path on x, then F (γ)ψ0 = ψ(T ) = ψ(0) = ψ0, so that F (γ) is the

identity operator on Rn. (In terms of the exponential formula for F , F (1x) = exp
∫ 0

0 whateverdt =
exp 0 = 1.)

Finally, if γ1:x → y and γ2: y → z, then F (γ1γ2)ψ0 = ψ(T1 + T2), where ψ is the solution
of Equation (2) with ψ(0) = ψ0. Meanwhile, F (γ1)ψ0 = ψ(T1) for this same ψ; let ψ1 be this
ψ(T1). If I translate ψ by T1, to get φ(t) = ψ(T1 + t), then φ is the solution to Equation (2) with
φ(0) = ψ(T1) = ψ1. Thus, F (γ2)ψ1 = φ(T2). Summing up,

F (γ1γ2)ψ0 = ψ(T1 + T2) = φ(T2) = F (γ2)ψ1 = F (γ2)F (γ1)ψ0.

In other words, F (γ1γ2) = F (γ2)F (γ1). (In terms of the exponential formula for F ,

F (γ1γ2) = Pe

∫
γ1γ2

A
= Pe

∫
γ2

A+
∫

γ1

A
= Pe

∫
γ2

A
Pe

∫
γ1

A
= F (γ2)F (γ1).

Again, the equation eA2+A1 = eA2eA1 is not valid for A1, A2 ∈ End(Rn); this is why we need
path-ordered exponentials in this problem.)

Therefore, F is indeed a functor.

An End(Rn)-valued 1-form A is called a connection on the trivial vector bundle

π:X × R
n → X.

If ψ(t) satisfies Equation (2), we say the vector ψ(t) is parallel transported along the path γ

using the connection A. The linear operator F (γ) is called the holonomy of the connection A

along the path γ.



All this stuff generalizes to the case of a connection on a nontrivial vector bundle

π:E → X

except that now the functor F maps each point x ∈ X to the fiber of E over x, namely Ex =
π−1(x). To handle this case, we choose an open cover of X such that E restricted to each open set
is trivializable, and reduce the problem to the case treated above. After huffing and puffing, we get:

Theorem 2. Suppose A is a smooth connection on a smooth vector bundle π:E → X over a smooth
manifold X. Then there is a unique functor

F :P(X) → Vect

such that:

• For any object x of P(X), F (x) is the fiber of E over x.

• For any morphism γ:x→ y of P(X), F (γ) is the holonomy of A along γ.

The converse is not true: there are functors F :P(X) → Vect that don’t come from connections on
vector bundles! However, we can characterize the functors that do by means of three conditions:

• F (γ1) = F (γ2) when γ2 is obtained by reparametrizing γ1:

γ2(t) = γ1(f(t))

for any monotone increasing function f .

• F (γ2) = F (γ1)
−1 when γ2 is a reversed version of γ1:

γ2(t) = γ1(f(t))

for any monotone decreasing function f .

• F (γ) depends smoothly on γ (in a certain precise sense).

For some hints on how to prove this, try:

J. Barrett, Holonomy and path structures in general relativity and Yang–Mills theory,
Int. J. Theor. Phys., 30 (1991), 1171–1215.

If we drop the smoothness condition, we call F a generalized connection. These play an important
role in loop quantum gravity.


