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A topological quantum field theory is a ‘symmetric monoidal functor’ Z: nCob → Vect. To know
what this means, we need some definitions from category theory. These make for rather dry reading
unless you get into the right mood, but they’re worth knowing, since they show up all over the place.

Categories, Functors, Natural Transformations

Definition 1. A category C consists of:

• a collection Ob(C) of objects.

• for any pair of objects x, y, a set hom(x, y) of morphisms from x to y. (If f ∈ hom(x, y) we
write f : x → y.)

equipped with:

• for any object x, an identity morphism 1x: x → x.

• for any pair of morphisms f : x → y and g: y → z, a morphism fg: x → z called the composite
of f and g.

such that:

• for any morphism f : x → y, the left and right unit laws hold: 1xf = f = f1y.

• for any triple of morphisms f : w → x, g: x → y, h: y → z, the associative law holds:
(fg)h = f(gh).

We usually write x ∈ C as an abbreviation for x ∈ Ob(C). An isomorphism is a morphism f : x → y

with an inverse, i.e. a morphism g: y → x such that fg = 1x and gf = 1y.

Definition 2. Given categories C, D, a functor F : C → D consists of:

• a function F : Ob(C) → Ob(D).

• for any pair of objects x, y ∈ Ob(C), a function F : hom(x, y) → hom(F (x), F (y)).

such that:

• F preserves identities: for any object x ∈ C, F (1x) = 1F (x).

• F preserves composition: for any pair of morphisms f : x → y, g: y → z in C, F (fg) =
F (f)F (g).

It’s not hard to define identity functors and composition of functors, and to check the left and right
unit law and associative law for these.

Definition 3. Given functors F, G: C → D, a natural transformation α: F ⇒ G consists of:

• a function α mapping each object x ∈ C to a morphism αx: F (x) → G(x)

such that:



• for any morphism f : x → y in C, this diagram commutes:

F (x)
F (f)

//

αx

��

F (y)

αy

��
G(x)

G(f)
// G(y)

With a little thought you can figure out how to compose natural transformations α: F → G and
β: G ⇒ H and get a natural transformation αβ: F ⇒ H . We can also define identity natural
transformations. Again, it’s not hard to check the left and right unit law and associativity for these.

Definition 4. Given functors F, G: C → D, a natural isomorphism α: F ⇒ G is a natural
transformation that has an inverse, i.e. a natural transformation β: G ⇒ F such that αβ = 1F and
βα = 1G.

It’s not hard to see that a natural transformation α: F ⇒ G is a natural isomorphism iff for every
object x ∈ C, the morphism αx is invertible.

Definition 5. A functor F : C → D is an equivalence if it has a weak inverse, that is, a functor
G: D → C such that there exist natural isomorphisms α: FG ⇒ 1C , β: GF ⇒ 1D.

Monoidal, Braided Monoidal, and Symmetric Monoidal Categories

Definition 6. A monoidal category consists of:

• a category M .

• a functor called the tensor product ⊗: M × M → M , where we write ⊗(x, y) = x ⊗ y and
⊗(f, g) = f ⊗ g for objects x, y ∈ M and morphisms f, g in M .

• an object called the identity object 1 ∈ M .

• natural isomorphisms called the associator:

ax,y,z: (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z),

the left unit law:
`x: 1 ⊗ x → x,

and the right unit law:
rx: x ⊗ 1 → x.

such that the following diagrams commute for all objects w, x, y, z ∈ M :

• the pentagon equation:

(w ⊗ x) ⊗ (y ⊗ z)

w ⊗ (x ⊗ (y ⊗ z))

w ⊗ ((x ⊗ y) ⊗ z)(w ⊗ (x ⊗ y)) ⊗ z

((w ⊗ x) ⊗ y) ⊗ z

aw,x,y⊗z
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1w⊗ax,y,z

CC������������aw,x⊗y,z //

aw,x,y⊗1z
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aw⊗x,y,z
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governing the associator.



• the triangle equations:

(x ⊗ 1) ⊗ y
ax,1,y //

rx⊗1y &&LLLLLLLLLL
x ⊗ (1 ⊗ y)

1x⊗`yxxrrrrrrrrrr

x ⊗ y

governing the left and right unit laws.

Definition 7. A braided monoidal category consists of:

• a monoidal category M .

• a natural isomorphism called the braiding:

Bx,y: x ⊗ y → y ⊗ x.

such that these two diagrams commute, called the hexagon equations:

x ⊗ (y ⊗ z) (x ⊗ y) ⊗ z (y ⊗ x) ⊗ z

(y ⊗ z) ⊗ x y ⊗ (z ⊗ x) y ⊗ (x ⊗ z)
?

Bx,y⊗z

-
a−1

x,y,z -Bx,y⊗z

?

ay,x,z

-
ay,z,x

-
y⊗Bx,z

(x ⊗ y) ⊗ z x ⊗ (y ⊗ z) x ⊗ (z ⊗ y)

z ⊗ (x ⊗ y) (z ⊗ x) ⊗ y (x ⊗ z) ⊗ y

?

Bx⊗y,z

-ax,y,z -x⊗By,z

?

a−1
x,z,y

-
a−1

z,x,y

-
Bx,z⊗y

Definition 8. A symmetric monoidal category is a braided monoidal category M for which the
braiding satisfies Bx,y = B−1

y,x for all objects x and y.

A monoidal, braided monoidal, or symmetric monoidal category is called strict if ax,y,z, `x, rx are
all identity morphisms. In this case we have

(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z),

1 ⊗ x = x, x ⊗ 1 = x.

In a sense to be made precise below, Mac Lane has shown that every monoidal (resp. braided
monoidal, symmetric monoidal) category is equivalent to a strict one. However, the examples that
turn up ‘in nature’, like the category of vector spaces and linear maps equipped with its usual tensor
product, are rarely strict.



Monoidal, Braided Monoidal, and Symmetric Monoidal Functors

We can ask that a functor between monoidal categories preserve the tensor product and the identity
object. This gives the notion of a ‘monoidal functor’. However, we should only ask that it preserves
these things up to a specified isomorphism. This isomorphism should then satisfy some compatibility
conditions.

Definition 9. A functor F : C → C ′ between monoidal categories is monoidal if it is equipped with:

• a natural isomorphism Φx,y: F (x) ⊗ F (y) → F (x ⊗ y).

• an isomorphism φ: 1C′ → F (1C).

such that

• the following diagram commutes for any objects x, y, z ∈ C:

(F (x) ⊗ F (y)) ⊗ F (z) F (x ⊗ y) ⊗ F (z) F ((x ⊗ y) ⊗ z)

F (x) ⊗ (F (y) ⊗ F (z)) F (x) ⊗ F (y ⊗ z) F (x ⊗ (y ⊗ z))

-Φx,y ⊗1F (z)

?

aF (x),F (y),F (z)

-Φx⊗y,z

?

F (ax,y,z)

-1F (x)⊗Φy,z -Φx,y⊗z

• the following diagrams commute for any object x ∈ C:

1 ⊗ F (x) F (x)

F (1) ⊗ F (x) F (1 ⊗ x)

-`F (x)

?

φ⊗1F (x)

-Φ1,x

6
F (`x)

F (x) ⊗ 1 F (x)

F (x) ⊗ F (1) F (x ⊗ 1)

-rF (x)

?

1F (x)⊗φ

-Φx,1

6
F (rx)

We similarly have concepts of ‘braided monoidal functor’ and ‘symmetric monoidal functor’:

Definition 10. A functor F : C → C ′ between braided monoidal categories is braided monoidal
if it is monoidal and it makes the following diagram commute for all x, y ∈ C:

F (x) ⊗ F (y) F (y) ⊗ F (x)

F (x ⊗ y) F (y ⊗ x)

-BF (x),F (y)

?

Φx,y

?

Φy,x

-F (Bx,y)



A symmetric monoidal functor is simply a braided monoidal functor that happens to go between
symmetric monoidal categories! No extra condition is involved here.

Monoidal, Braided Monoidal, and Symmetric Monoidal

Natural Transformations

It would be a pity to discuss monoidal, braided monoidal and symmetric monoidal categories and
functors but not the corresponding sorts of natural transformations. Recall that a monoidal functor
F : C → C ′ is really a triple (F, Φ, φ) consisting of a functor, a natural isomorphism

Φx,y: F (x) ⊗ F (y) → F (x ⊗ y),

and an isomorphism
φ: 1C′ → F (1C).

A ‘monoidal natural transformation’ is one that gets along with these extra isomorphisms:

Definition 11. Suppose that (F, Φ, φ) and (G, Γ, γ) are monoidal functors from the monoidal cat-
egory C to the monoidal category D. Then a natural transformation α: F → G is monoidal if the
diagrams

F (x) ⊗ F (y) G(x) ⊗ G(y)

F (x ⊗ y) G(x ⊗ y)

-αx⊗αy

?

Φx,y

?

Γx,y

-αx⊗y

and

1

F (1) G(1)
?

φ

@
@

@
@R

γ

-α1

commute.

There are no extra conditions required of braided monoidal or symmetric monoidal natural
transformations.

One needs these concepts to give a precise statement of the sense in which any monoidal (resp.
braided monoidal, symmetric monoidal) category is equivalent to a strict one, since the right concept
of ‘equivalence’ is stronger than mere equivalence as categories:

Definition 12. If C and D are monoidal categories, a monoidal functor F : C → D is an monoidal
equivalence if there is a monoidal functor G: D → C such that there exist monoidal natural iso-
morphisms α: FG ⇒ 1C, β: GF ⇒ 1D.

And similarly:

Definition 13. If C and D are braided (resp. symmetric) monoidal categories, a braided (resp.
symmetric) monoidal functor F : C → D is an braided (resp. symmetric) monoidal equiv-
alence if there is a braided (resp. symmetric) monoidal functor G: D → C such that there exist
braided (resp. symmetric) monoidal natural isomorphisms α: FG ⇒ 1C, β: GF ⇒ 1D.



Theorem 1 – MacLane’s Theorem. Given a monoidal category C, there exists a strict monoidal
category C ′ for which there is a monoidal equivalence F : C → C ′. Similarly, given a braided (resp.
symmetric) monoidal category, there exists a strict braided (resp. symmetric) monoidal category C ′

for which there is a braided (resp. symmetric) monoidal equivalence F : C → C ′.

With some work one can check that there is a 2-category Cat consisting of categories, functors and
natural transformations. Similarly there is a 2-category MonCat consisting of monoidal categories,
monoidal functors and monoidal transformations. Likewise, there are 2-categories BrMonCat and
SymmMonCat. But I haven’t even defined a 2-category yet, so let’s stop here!


