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The concept of ‘dual vector space’ has a massive generalization in terms of category theory. It goes
like this. . . .

Suppose C is a monoidal category. An adjunction in C is a quadruple (x, x∗, i, e) where:

• x and x∗ are objects in C.

• i: 1 → x ⊗ x∗ and e: x∗ ⊗ x → 1 are morphisms in C (called the unit and counit of the
adjunction, respectively).

• The following diagrams commute:

1 ⊗ x
i⊗1 //

`x

��

(x ⊗ x∗) ⊗ x
ax,x∗,x // x ⊗ (x∗ ⊗ x)

1⊗e

��
x

r−1
x

// x ⊗ 1

x∗ ⊗ 1
1⊗i //

rx∗

��

x∗ ⊗ (x ⊗ x∗)
a
−1
x∗,x,x∗

// (x∗ ⊗ x) ⊗ x∗

e⊗1

��
x∗

`
−1
x∗

// 1 ⊗ x∗

Aaron Lauda has dubbed the above commutative diagrams the zig-zag identities. Why? The string
diagram for the unit i: 1 → x ⊗ x∗ looks like this:

SS��

i

where it is understood that the downward pointing arrow corresponds to x and the upward pointing
arrow to x∗. Similarly, the counit e: x∗ ⊗ x → 1 looks like this:

��RR

e

These string diagrams are reminiscent of the Feynman diagrams for the creation and annihilation of
particle/antiparticle pairs! In this notation, the zig-zag identities simply say that we can straighten
a zig-zag in a piece of string:

OO�� ��

ix

ex

= ���� x ��OO OO

ex

ix

= OOOO x

1I reserve no copyright or patent rights to this work; see http://toby.bartels.name/copyright/.



1. The category Vectk has finite-dimensional vector spaces over a fixed field k as its objects and
linear maps between these as its morphisms. Vect becomes a monoidal category with the usual
tensor product of vector spaces and with the unit object 1 = k.

Suppose V ∈ Vectk and V ∗ is its dual, i.e. the space of all linear maps f : V → k. Define iV : k →
V ⊗ V ∗ ∼= End(V ) by

iV (α) = α 1V

and define eV : V ∗ ⊗ V → k by
eV (f ⊗ v) = f(v).

a. Show that (V, V ∗, iV , eV ) is an adjunction.

I just have to check the commutative diagrams. To identify End(V ) with V ⊗ V ∗, let (ei)i be a
basis of V , with the dual basis (ei)i of V ∗; then 1V is identified with

∑
i (ei ⊗ ei), which in turn is

abbreviated ei ⊗ ei. Thus iV (α) = α ei ⊗ ei.
Starting with α ⊗ v ∈ 1⊗ V , I go around to the right to get α (ei ⊗ ei)⊗ v, then α ei ⊗ (ei ⊗ v),

and then α ei ⊗ vi = αviei ⊗ 1 = α ⊗ 1, where the vi are the components of v relative to the basis
(ei)i. Going around to the left, I get αv and then αv ⊗ 1. Thus, this diagram commutes.

Then starting with f⊗α ∈ V ∗⊗1, I go around to the right to get α f⊗(ei ⊗ ei), then α (f ⊗ ei)⊗ei

and then α fi ⊗ ei = α 1 ⊗ fie
i = α ⊗ f , where the f i are the components of f relative to the basis

(ei)i. Going around to the left, I get α f and then α ⊗ f . Thus, this diagram also commutes.
Therefore, this is an adjunction.

b. What goes wrong when V is infinite-dimensional?

Now I can no longer identify End(V ) with V ⊗ V ∗, so I can’t define iV . More specifically, there is
still a monomorphism from V ⊗V ∗ to End(V ), but its image consists only of the operators of finite
rank. Since 1V now has infinite rank, the construction fails.

In the above situation we often call V ∗ ‘the’ dual of V , but one should be a bit careful. After
all, the precise definition of ‘linear map’ depends on the definition of ‘function’, and different peo-
ple use slightly different definitions of ‘function’ — for example, by saying a function is a set of
ordered pairs, but using different definitions of ‘ordered pair’, such as Norbert Wiener’s original
1914 definition (x, y) = {{{x}, ∅}, {{y}}}, Kazimierz Kuratowski’s more efficient 1921 definition
(x, y) = {{x}, {x, y}}, or his brother Zreimizak’s 1922 definition (x, y) = {{y}, {y, x}}. (Tragically,
Kazimierz and Zreimizak killed each other in a foolish swordfight over this issue in 1923.)

So, if we were being incredibly nitpicky, we might call V ∗ ‘a’ dual of V . The concept of adjunction
makes this more precise, by saying exactly what a dual should be like — at least in the finite-
dimensional case. And the really nice thing is that we can prove that any two duals of the same
object are isomorphic in a god-given way:

2. Suppose x is an object in the monoidal category C and (x, y, i, e) and (x, y′, i′, e′) are adjunctions.

a. Construct an isomorphism f : y → y′.

OOOO f := ��OO OO

ex

i′x

OOOO f−1

:= ��OO OO

e′
x

ix



OOOO

f

f−1

= ��OO ��OO OO

ex

i′x

e′
x

ix

= ��OO OO

ex

ix

= OOOO y

OOOO

f−1

f

= ��OO ��OO OO

e′
x

ix

ex

i′x

= ��OO OO

e′
x

i′x

= OOOO y′

b. Describe the sense in which the isomorphism f : y → y′ makes (x, y, i, e) and (x, y′, i′, e′) into
isomorphic adjunctions.

�� OO f

ix

= ��OO�� OO

ix

ex

i′x

= �� OO

i′x

��OOf

e′
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= ��OO ��OO

ex

i′x

e′
x
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ex

(Hint: it’s easiest to do these using string diagrams.)

This result means we’re allowed to speak of ‘the dual’ of x as long as we use the word ‘the’ in its
official category-theoretic sense. In set theory, we’re allowed to speak of the element with some
property whenever such an object exists and any two elements with this property are equal. In
category theory, we’re allowed to speak of the object equipped with some stuff whenever such an
object exists and any two objects equipped with this stuff are isomorphic in a specified way.

Finally, let’s show that monoidal functors automatically preserve duals of objects:

3. Suppose C and D are monoidal categories and F : C → D is a monoidal functor. Show that if
(x, y, i, e) is an adjunction in C, there is an adjunction in D making F (y) into the dual of F (x).

Since F is a monoidal functor, it comes equipped with isomorphisms Φx,y: F (x)⊗DF (y) → F (x ⊗C y),
Φy,x: F (y)⊗D F (x) → F (y ⊗C x), and φ: 1D → F (1C). Using these, let iD: 1 → F (x)⊗F (y) be the
composition φ F (i)Φ−1

x,y, and let eD: F (y) ⊗ F (x) → 1 be Φy,x F (e) φ−1.
Then this diagram commutes:

1 ⊗ F (x)
iD⊗1 //

`F (x)

��

(F (x) ⊗ F (y)) ⊗ F (x)
aF (x),F (y),F (x) // F (x) ⊗ (F (y) ⊗ F (x))

1⊗eD

��
F (x)

r
−1
F (x)

// F (x) ⊗ 1



because it may be broken down as:

1D ⊗ F (x)

@

`F (x)

��?
?

?
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?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?

φ⊗F (1x)
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iD⊗F (1x) // (F (x) ⊗ F (y)) ⊗ F (x)

Φx,y⊗F (1x)

��

E
αF (x),F (y),F (x)

��?
?

?
?

?
?

?
?

?

F (1C) ⊗ F (x)

Φ1C ,x

��

F (i)⊗F (1x)// F (x ⊗ y) ⊗ F (x)

Φx⊗y,x

��

F (x) ⊗ (F (y) ⊗ F (x))

F (1x)⊗Φy,x

uujjjjjjjjjjjjjjj

F (1x)⊗eD

��

F (1C ⊗ x)

F (`x)

��

F (i⊗1x)
// F ((x ⊗ y) ⊗ x)

F (αx,y,x) // F (x ⊗ (y ⊗ x))

F (1x⊗e)

��

F (x) ⊗ F (y ⊗ x)
Φx,y⊗xoo

F (1x⊗e)

��
F (x) F (x ⊗ 1C)

F (rx)
oo F (x) ⊗ F (1C)

Φx,1C

oo

F (x) ⊗ 1D

F (1x)⊗φ
iiTTTTTTTTTTTTTTTA

rF (x)
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?
?
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Similarly, this diagram commutes:

F (y) ⊗ 1
1⊗iD //

rF (y)

��

F (y) ⊗ (F (x) ⊗ F (y))
a
−1
F (y),F (x),F (y) // (F (y) ⊗ F (x)) ⊗ F (y)

eD⊗1

��
F (y)

`
−1
F (y)

// 1 ⊗ F (y)

because it may be broken down into another huge diagram, which I’ll skip.
[Note: I did not use string diagrams for this, because it seems to me that their validity depends

on already having an adjunction.]
Therefore, (F (x), F (y), iD, eD) is an adjunction in the monoidal category D.

(Hint: when F is a strict monoidal functor this adjunction in D is just (F (x), F (y), F (i), F (e)),
but in general we need to keep track of the fact that F preserves the tensor product and unit object
only up to specified isomorphisms.)


