Duals

Questions by: John C. Baez, November 4, 2004 Answers by: Toby Bartels¹, 2004 November 11

The concept of 'dual vector space' has a massive generalization in terms of category theory. It goes like this....

Suppose C is a monoidal category. An adjunction in C is a quadruple (x, x^*, i, e) where:

- x and x^* are objects in C.
- $i: 1 \to x \otimes x^*$ and $e: x^* \otimes x \to 1$ are morphisms in C (called the unit and counit of the adjunction, respectively).
- The following diagrams commute:

Aaron Lauda has dubbed the above commutative diagrams the zig-zag identities. Why? The string diagram for the unit $i: 1 \rightarrow x \otimes x^*$ looks like this:

where it is understood that the downward pointing arrow corresponds to x and the upward pointing arrow to x^* . Similarly, the counit $e: x^* \otimes x \to 1$ looks like this:

These string diagrams are reminiscent of the Feynman diagrams for the creation and annihilation of particle/antiparticle pairs! In this notation, the zig-zag identities simply say that we can straighten a zig-zag in a piece of string:

¹I reserve no copyright or patent rights to this work; see http://toby.bartels.name/copyright/.

1. The category Vect_k has finite-dimensional vector spaces over a fixed field k as its objects and linear maps between these as its morphisms. Vect becomes a monoidal category with the usual tensor product of vector spaces and with the unit object 1 = k.

Suppose $V \in \text{Vect}_k$ and V^* is its dual, i.e. the space of all linear maps $f: V \to k$. Define $i_V: k \to V \otimes V^* \cong \text{End}(V)$ by

$$i_V(\alpha) = \alpha \, \mathbb{1}_V$$

and define $e_V: V^* \otimes V \to k$ by

$$e_V(f\otimes v)=f(v).$$

a. Show that (V, V^*, i_V, e_V) is an adjunction.

I just have to check the commutative diagrams. To identify $\operatorname{End}(V)$ with $V \otimes V^*$, let $(e_i)_i$ be a basis of V, with the dual basis $(e^i)_i$ of V^* ; then 1_V is identified with $\sum_i (e_i \otimes e^i)$, which in turn is abbreviated $e_i \otimes e^i$. Thus $i_V(\alpha) = \alpha e_i \otimes e^i$.

Starting with $\alpha \otimes v \in 1 \otimes V$, I go around to the right to get $\alpha (e_i \otimes e^i) \otimes v$, then $\alpha e_i \otimes (e^i \otimes v)$, and then $\alpha e_i \otimes v^i = \alpha v^i e_i \otimes 1 = \alpha \otimes 1$, where the v^i are the components of v relative to the basis $(e_i)_i$. Going around to the left, I get αv and then $\alpha v \otimes 1$. Thus, this diagram commutes.

Then starting with $f \otimes \alpha \in V^* \otimes 1$, I go around to the right to get $\alpha f \otimes (e_i \otimes e^i)$, then $\alpha (f \otimes e_i) \otimes e^i$ and then $\alpha f_i \otimes e^i = \alpha 1 \otimes f_i e^i = \alpha \otimes f$, where the f^i are the components of f relative to the basis $(e^i)_i$. Going around to the left, I get αf and then $\alpha \otimes f$. Thus, this diagram also commutes.

Therefore, this is an adjunction.

b. What goes wrong when V is infinite-dimensional?

Now I can no longer identify $\operatorname{End}(V)$ with $V \otimes V^*$, so I can't define i_V . More specifically, there is still a monomorphism from $V \otimes V^*$ to $\operatorname{End}(V)$, but its image consists only of the operators of finite rank. Since 1_V now has infinite rank, the construction fails.

In the above situation we often call V^* 'the' dual of V, but one should be a bit careful. After all, the precise definition of 'linear map' depends on the definition of 'function', and different people use slightly different definitions of 'function' — for example, by saying a function is a set of ordered pairs, but using different definitions of 'ordered pair', such as Norbert Wiener's original 1914 definition $(x, y) = \{\{x\}, \emptyset\}, \{\{y\}\}\}$, Kazimierz Kuratowski's more efficient 1921 definition $(x, y) = \{\{x\}, \{x, y\}\}$, or his brother Zreimizak's 1922 definition $(x, y) = \{\{y\}, \{y, x\}\}$. (Tragically, Kazimierz and Zreimizak killed each other in a foolish swordfight over this issue in 1923.)

So, if we were being incredibly nitpicky, we might call V^* 'a' dual of V. The concept of adjunction makes this more precise, by saying exactly what a dual should be like — at least in the finitedimensional case. And the really nice thing is that we can prove that any two duals of the same object are isomorphic in a god-given way:

- 2. Suppose x is an object in the monoidal category C and (x, y, i, e) and (x, y', i', e') are adjunctions.
- a. Construct an isomorphism $f: y \to y'$.

$$\left| \begin{array}{ccc} f & := & \left| \begin{array}{c} & & \\ &$$

b. Describe the sense in which the isomorphism $f: y \to y'$ makes (x, y, i, e) and (x, y', i', e') into isomorphic adjunctions.

(*Hint: it's easiest to do these using string diagrams.*)

This result means we're allowed to speak of 'the dual' of x as long as we use the word 'the' in its official category-theoretic sense. In set theory, we're allowed to speak of **the** element with some property whenever such an object exists and any two elements with this property are equal. In category theory, we're allowed to speak of **the** object equipped with some stuff whenever such an object exists and any two objects equipped with this stuff are isomorphic in a specified way.

Finally, let's show that monoidal functors automatically preserve duals of objects:

3. Suppose C and D are monoidal categories and $F: C \to D$ is a monoidal functor. Show that if (x, y, i, e) is an adjunction in C, there is an adjunction in D making F(y) into the dual of F(x).

Since F is a monoidal functor, it comes equipped with isomorphisms $\Phi_{x,y}$: $F(x) \otimes_D F(y) \to F(x \otimes_C y)$, $\Phi_{y,x}$: $F(y) \otimes_D F(x) \to F(y \otimes_C x)$, and $\phi: 1_D \to F(1_C)$. Using these, let $i_D: 1 \to F(x) \otimes F(y)$ be the composition $\phi F(i) \Phi_{x,y}^{-1}$, and let $e_D: F(y) \otimes F(x) \to 1$ be $\Phi_{y,x} F(e) \phi^{-1}$.

Then this diagram commutes:

$$\begin{array}{c|c} 1 \otimes F(x) \xrightarrow{i_D \otimes 1} (F(x) \otimes F(y)) \otimes F(x) \xrightarrow{a_{F(x),F(y),F(x)}} F(x) \otimes (F(y) \otimes F(x)) \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ F(x) \xrightarrow{r_{F(x)}^{-1}} F(x) \otimes 1 \end{array}$$

because it may be broken down as:

Similarly, this diagram commutes:

$$\begin{array}{c|c} F(y) \otimes 1 \xrightarrow{1 \otimes i_D} F(y) \otimes (F(x) \otimes F(y)) \xrightarrow{a_{F(y),F(x),F(y)}^{-1}} (F(y) \otimes F(x)) \otimes F(y) \\ & & \downarrow e_D \otimes 1 \\ F(y) \xrightarrow{F(y)} & & \downarrow e_D \otimes 1 \\ & & & & \downarrow e_D \otimes 1 \\ & & & & \downarrow e_D \otimes 1 \\ & & & & \downarrow e_D \otimes 1 \\ & & & & & \downarrow e_D \otimes 1 \\ & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & & \\ & & & &$$

because it may be broken down into another huge diagram, which I'll skip.

[Note: I did not use string diagrams for this, because it seems to me that their validity depends on already having an adjunction.]

Therefore, $(F(x), F(y), i_D, e_D)$ is an adjunction in the monoidal category D.

(Hint: when F is a strict monoidal functor this adjunction in D is just (F(x), F(y), F(i), F(e)), but in general we need to keep track of the fact that F preserves the tensor product and unit object only up to specified isomorphisms.)