1.1 Evaluate the lambda-expression

$$\Big(\Big((\lambda f. \lambda x. f(f(f(x)))) \, (\lambda g. \lambda y. g(g(y))) \Big) \, (\lambda z. z + 1) \Big) (0).$$

Given any function f (with codomain equal to the domain, or at least contained in the domain, or at least at least equipped with a map to the domain), let f^n be the n-fold composite of f with itself. For example, $f^2(x) = f(f(x))$, so $\lambda x. f(f(x)) = f^2$ (that is $f \circ f$).

at least equipped with a map to the domain), let f be the n-fold composite of f with itself. For example, $f^2(x) = f(f(x))$, so $\lambda x. f(f(x)) = f^2$ (that is $f \circ f$). Then $\lambda x. f(f(f(x))) = f^3$, and $\lambda y. g(g(y)) = g^2$. So, $\lambda g. \lambda y. g(g(y))$ is the operation that maps g to g^2 , while $\lambda f. \lambda x. f(f(f(x)))$ is the operation that maps f to f^3 . Applying the latter operation to the former operation, I get the operation that maps f to f^3 . (To generalise this, note that f^3 applying this operation f^3 and f^3 applying the latter operation to f^3 applying this operation f^3 and f^3 applying the latter operation to f^3 applying this operation f^3 and f^3 applying the latter operation to f^3 applying this operation f^3 and f^3 applying the latter operation to f^3 applying this operation f^3 and f^3 applying the latter operation to f^3 applying this operation f^3 and f^3 applying the latter operation to f^3 applying the latter operation to f^3 applying this operation f^3 and f^3 applying the latter operation to f^3 applying f^3 applying the latter operation to f^3 applying the latter operation that f^3 applying the latter operation to f^3 applying the latter operation that f^3 applying the latter

1.2 Let $\omega = \lambda x.x(x)$. What is $\omega(\omega)$?

In general, $\omega(f) = f(f)$ (for any function f that belongs to its domain, or at least is equipped with an element of its domain). Therefore, $\omega(\omega) = \omega(\omega)$. The expression cannot be further evaluated.

Perhaps more interesting would be to consider $\eta = \lambda x.x(x(x))$. Then $\eta(\eta) = \eta(\eta(\eta))$; evaluating the expression just makes it more complicated!