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Given a category C with finite products, show it can be turned into a monoidal
category.

Universal property of products

Given objects A1, As, ..., A, in C, for some n, there exists an object A, called
the product, with morphisms m;: A — A;, for each i, such that for every object
X in C with morphisms ¢;: A — A;, for each i, there exists a unique morphism
¢: X — A such that
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commutes. i.e., m; 0 p=¢;, for all i.

Isomorphism of products

It will be useful to first show that any two products of a given collection of
objects are isomorphic.

Consider two products D and D’ of the objects A and B, each with projection
maps to A and B.
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By the universal property of products there exist unique maps ¢: D — D’ and
¢': D’ — D such that each triangle commutes. There also exists a unique map



from D to D which makes the square commute. It is easily checked that the
composition ¢’ o ¢ makes the square commute. Since the identity satisfies this
property we have ¢’ o ¢ = 1p. Thus, D and D’ are isomorphic. This proof
generalizes easily to products of any finite number of objects.

The product of no objects is terminal

Consider the product of no objects, which we call 1. We would like to show that
this is a terminal object in our category, i.e., for every object X in C there is
exactly one morphism to 1.
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For any object the diagram above vacuously satisfies the hypotheses of the uni-
versal property of products, so there exists a unique map into 1.

The tensor functor

We define the map ®: C'x C' — C both on objects and morphisms. Given a pair
of objects A and B and assuming the axiom of choice, the tensor map chooses
a product of A and B with projection maps to A and B. (In what follows,
the arrows which are these projections will be not be labelled since it is clear
what they are.) Since we have already shown that all products of A and B
are isomorphic, we will call the chosen product A ® B and the map of objects
is well-defined up to isomorphism. Given a pair of morphisms f: A — A’ and
g: B — B’, consider the diagram
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and we define ®(f,g) to be the unique map f ® g:A® B — A’ ® B’ in the
diagram.



The identity

Similarly, if we consider the identity maps 14:A — A and 1p: B — B, the
following diagram gives the unique morphism 14 ® 15 from A®B to A®B such
that the diagram commutes.
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Since the identity map 14 p satisfies this diagram, we have 14 ® 15 = 1ag5B.
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Composition

Given morphisms f: A — B, ¢:B — C, f: A’ — B, ¢": B — C’. We want to
show ® respects composition of morphisms.
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The definition of tensors of morphisms given above tells us that each small
square of this diagram commutes giving f ® f’ and g ® ¢’. The full diagram
itself defines (go f) ® (¢’ o f') by the same tensor definition. Since all the small
squares commute, g ® ¢’ o f ® f’ satsifies the commutivity of the larger square.
Thus, by uniqueness, we must have (go f) @ (¢’ o f') = (g ¢") o (f @ f).

The unitors

Since 1 ® A and A are both products of 1 and A, we have an isomorphism
la:1® A — A for every object A in our category given by the diagram
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Similarly, we have an isomorphism r4: A®1 — A. Note that the above diagram
says that [ 4 must be the very same projection chosen by the functor from A® 1
to A. The same is true for r4.

Naturality

Given the functors F: C — C defined by A— 1® A, f — 1 ® f and the
identity functor, we now show that 4 is natural. That is, given objects A and
B in C and a morphism f in C from A to B, we want the following diagram to
commute:
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But extending this diagram slightly we have the diagram which defined the
tensor functor on morphisms
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which commutes. The bottom square is the same diagram as our naturality
square above and the squares commute as desired. A similar argument gives us
that r4 is natural.

The associators

We now define ismorphisms of products called the associators. Given objects
A, B and C in C, we consider the product diagram
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and call the unique map a4 pgc the associator. As with the other morphisms
given from product diagrams, this map is an isomorphism.

Naturality

As with the unitors, we need to show the associator is a natural isomorphism.
So given functors F' and G which take objects A, B, and C to (A® B) ® C and
A® (B® C) respectively, and morphisms f: A — A’, g: B — B’, and h: C — C’
to (f®g)®@h and f® (g ® h) respectively, we must show the following diagram
commutes.
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Each of the morphisms in this square are defined as the unique morphism that
makes some diagram commute. These diagrams use the universal property of
products with projections onto either A, B, and C or A’, B’, and C’. Since
we have morphisms between each object and its primed partner, respectively,
it can be shown that this diagram is made up of several smaller commuting
diagrams, therefore it commutes. The explicit calculations are left out since
they are cumbersome and not very instructive.

The unit laws

We want the following diagram to hold.
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The appropriate definition for a1, comes from the following diagram.



So, we have

r4a ® 1p and 14 ® lp, respectively, make the top and bottom of the diagram
commute since these are the diagrams in the respective product diagram defi-
nitions. Since the associator also makes this diagram commute, we have that
all smaller diagrams here commute. (14 ® Ig) o a,1,p and 74 ® 1 are both
maps from (A® 1) ® B to A ® B and they both make the following portion of
the above diagram commute.
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So, the two morphisms are equal and the desired diagram commutes.



The pentagon equation

Finally, given objects A, B, C, and D, the associators must satisfy the following
diagram.
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Each of the objects in the pentagon is a product of the four objects A, B, C,
and D with the appropriate projection maps. All of the morphisms in the pen-
tagon equation are associators or tensor products of associators and identity
maps. Therefore, they all satisfy commutative product diagrams with projec-
tions onto each of the four objects. Drawing each of these product diagrams
gives a tangle of morphisms and triangles which make up the pentagon. Since
each diagram comprising the pentagon commutes, it is a simple (yet messy)
exercise to see that the pentagon actually commutes.



