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1. Suppose you have a spring in R
n with fixed endpoints, tracing out a curve

q : [s0, s1] → R
n, q(s0) = a, q(s1) = b.

If the spring is in a potential V R
n
→ R, what curve will the spring trace out when

it’s in equilibrium?

Since the total spring energy is

E =

∫ s1

s0

[

k

2
q̇(s) · q̇(s) + V (q(s))

]

ds,

we set δE = 0 and investigate the implications.

δE = δ

(
∫ s1

s0

[

k

2
q̇(s) · q̇(s) + V (q(s))

]

ds

)

= ∂
∂ε

(
∫ s1

s0

[

k

2
q̇(s) · q̇(s) + V (q(s))

]

ds

)

∣

∣

∣

ε=0

def of δ

=

∫ s1

s0

k

2
∂
∂ε

[q̇(s) · q̇(s)] + ∂
∂ε

[V (q(s))] ds

∣

∣

∣

ε=0

linearity

=

∫ s1

s0

kq̇ε(s)
∂
∂ε

[q̇ε(s)] + ∇V (qε(s))
∂
∂ε

[qε(s)] ds

∣

∣

∣

ε=0

chain rule

=

∫ s1

s0

kq̇ε(s)
∂
∂t

∂
∂ε

[qε(s)] + ∇V (qε(s))
∂
∂ε

[qε(s)] ds

∣

∣

∣

ε=0

mixed partials

=

∫ s1

s0

−k
(

∂
∂t

q̇ε(s)
)

∂
∂ε

[qε(s)] + ∇V (qε(s))
∂
∂ε

[qε(s)] ds

∣

∣

∣

ε=0

IBP

=

∫ s1

s0

(

−kq̈ε(s) + ∇V (qε(s))
)

∂
∂ε

[qε(s)] ds

∣

∣

∣

ε=0

factoring

=

∫ s1

s0

(

−kq̈(s) + ∇V (q(s))
)

∂
∂ε

[qε(s)]ε=0
ds letting ε = 0.

So if this is 0 for all allowable variations δq, we must have an integrand of 0, i.e.,

kq̈(s) = ∇V (q(s)).

2. Suppose the spring is in a constant downwards gravitational field in R
3, so that

V (x, y, z) = mgz,

where m is the mass density of the spring and g is the acceleration of gravity (9.8
m/s2). What sort of curve does the spring trace out, in equilibrium?

Apply the answer from (1), ∇V = kq̈(s), and compute

∇V (x, y, z) = ∇(mgz) = [0, 0, mg]
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to obtain the system















q̈1(s) = 0

q̈2(s) = 0

q̈3(s) = mg

k
.

All equations may be solved directly by successive integrations; the first two yield
linear functions, and the third gives a polynomial in z:











q1(s) = (b1 − a1)s + a1

q2(s) = (b2 − a2)s + a2

q3(s) = mg

2k
s2 +

(

b3 − a3 −
mg

2k

)

s + a3,

where the values of the constants are deduced by comparison to the components of
q(s0) = a, q(s1) = b.

Thus the spring traces out a parabola lying in the vertical plane whose intersection
with the xy-plane is the straight line from (a1, a2) to (b1, b2).

3. Using the energy, as given previously, replace the parameter s by it and show that
up to a constant, the energy of the static string becomes the action for a particle
moving in a potential.

E =

∫ s1

s0

[

k

2
q̇(s) · q̇(s) + V (q(s))

]

ds

=

∫ s1

s0

[

k

2
∂
∂s

q(s) · ∂
∂s

q(s) + V (q(s))

]

ds

=

∫ t1

t0

[

k

2
∂
∂t

q(it) · ∂
∂t

q(it) + V (q(it))

]

d(it)

=

∫ t1

t0

[

k

2
iq̇(it) · iq̇(it) + V (q(it))

]

i dt

=

∫ t1

t0

[

−
k

2
q̇(it) · q̇(it) + V (q(it))

]

i dt

= −i

∫ t1

t0

[

k

2
q̇(it) · q̇(it) − V (q(it))

]

dt

= −iS(q)
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4. The analogy between statics and dynamics.

Principle of Least Energy Principle of Least Action
spring particle
energy action

“tension” energy kinetic energy
potential energy potential energy
spring constant k mass m

5. What particular dynamics problem (pun intended) is the statics problem in 2 anal-
ogous to? How is the solution to the statics problem related to the solution of this
dynamics problem?

The problem is: “What curve does a particle trace out when it moves through a
(gravitational) potential, minimizing action?”

The answer is again a parabola; the negative sign introduced during the rotation
into imaginary time has the effect of flipping the parabola, so it open downwards, as
is appropriate for the path of a projectile.

6. What does Newton’s law F = ma become if we formally replace t by s = it?

Since

F = ma

−∇V = m ∂2

∂t2
q(it)

−∇V = −mq̈(it)

∇V = mq̈(it)

F = −mq̈(it)

F = −ma,

we see that in an imaginary world, Newton’s law is reversed.
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