10.2.07:

- Geometric Representation Theory:
 - Representations of transformation groups,
 (rep. = group action on say vector space)
 - Typically we mean linear groups on R^n space,
 - But we are interested in other transformation groups.
 - We unit groups that preserve structure

Example:
1. Diffeomorphism group → preserve differential structure

Also: Every transformation group is the group of
"something" morphism. For some unique something.
I.e. Diffeomorphism are automorphism (or symmetry)
that preserve diffeomorphism.

How do we define the structure? Given group G
the set G is acting on, we should be able to give
the structure "preserved."

Symmetry: structure is like a dual. (Symmetry is like "neg."
 aspect of structure)

Structure

Entropy

Information

Invariance

Logic: has the job of putting structure on a set.
 → Axiomatic theory puts structure on a set:
 a) Types 1) Abstract predicates
 2) axioms about predicates

Example: Euclidean geometry: { pts, lines, 2}
A point lies on a line.
A model of the theory is a concrete realization
of abstract types, predicates, axioms.
Transformation group: axiomatic theory and the same thing.

To find structure we need to look at the action of G on S; figure out what is invariant in the group. These invariants give the abstract (isomorphic) group.

- "Orbi-simplex" picture of a transformation group. $G \leq S$!

Fix every axiomatic theory is there a transformation group? Sort of...

Restrict to Finite transformation group. (G, S are finite).

Complete axiomatic theory with an axiom stating that the "semivolume" of the model is bounded by N.

For true type of theory, all models are isomorphic (category). The automorphism group of a model is a transformation group. This is example of group \rightarrow Axiomatic theory.

Now the orbi-simplex picture is the orbit space of the action of G on the simplex whose vertices are the elements of S.

Simplices: 0 - 0 simplex

- 1 - simplex

\[\begin{array}{c}
\text{2} \\
\text{3 - simplex}
\end{array} \]

As long as S is 3 pts we can keep objects on the board.
So let G be the 3 elt group. If G is a subgroup of $S_3 \times \{1\}$

Define G to be the transformations that are invertible of the set $\{A, B, C\}$ that preserve A.

So construct a simplex of elts of $S_3 \times \{1\}$ if $|S| = n$ then\[\text{claim the n-simplex}\]

This is a hyperpolyhedral object

The orbit space is the quotient space by identifying points that are in the same orbit.

So the orbit simplex is a hyperpolyhedral space.

Basicatric subdivision: more crosses give more elts of the group

The lattice corresponds to a Young tableau: Young diagram

Note that $m \times n = n \times m$

Rule: Split: shades

Faces: 6 sufaces correspond to
Eilenberg is an acting. For the full group: