Lie Theory Through Examples

John Baez

Lecture 3

1 Representations of Lie Groups

We've been having some fun getting lattices from simply-connected complex simple Lie groups. If someone hands us one of these, say G, we first choose a maximal compact subgroup $K \subseteq G$. They're all conjugate inside G, so it doesn't matter which one we choose. Then, we choose a maximal torus $T \subseteq K$. Again, they're all conjugate inside K, so it doesn't matter which one we choose. Then we can work out the Lie algebra t of T and find a lattice

$$L = \ker e = \subseteq \mathfrak{t}$$

where

$$\begin{array}{rccc} e: \mathfrak{t} & \to & T \\ x & \mapsto & \exp(2\pi x). \end{array}$$

So far we've done this for $G = SL(3, \mathbb{C})$ and $K = SL(4, \mathbb{C})$. The other $SL(n, \mathbb{C})$'s work similarly, and soon we'll do even more examples. It's a lot of fun.

But, what's it all good for?

Among other things, it's good for classifying the complex-analytic representations of G, and the unitary representations of K. So, we need a word or two about these.

Remember that a **representation** of any Lie group H is a smooth homomorphism

$$\rho: H \to \mathrm{GL}(V)$$

where V is a vector space and GL(V) is the group of invertible linear transformations of V. In what follows we'll always assume V is finite-dimensional. When $V = \mathbb{C}^n$ we also call GL(V) the **general linear group** $GL(n, \mathbb{C})$.

Now, the group $\operatorname{GL}(V)$ is always a complex manifold: we can cover it with coordinate charts that look like \mathbb{C}^n , with complex-analytic transition functions. It makes sense to talk about complexanalytic maps between complex manifolds. And indeed, $\operatorname{GL}(V)$ is a **complex Lie group**: a complex manifold where the functions describing multiplication and inverses are complex analytic. To see this, just use the usual formulas for multiplying and taking inverses of matrices.

If H is a complex Lie group, we say a representation $\rho: H \to GL(V)$ is **complex-analytic** if it is complex-analytic as a map between complex manifolds. Such representations are easy to come by:

Exercise 1 Show that $SL(n, \mathbb{C})$ is a complex Lie group, and the obvious representation of $SL(n, \mathbb{C})$ on \mathbb{C}^n is complex analytic.

Exercise 2 Show that if $\rho, \sigma: G \to GL(V)$ are complex-analytic representations, so are $\rho \oplus \sigma$ and $\rho \otimes \sigma$.

Exercise 3 Show that any subrepresentation of a complex-analytic representation is complex-analytic.

On the other hand, unitary representations are also nice. Given a Lie group H and a finitedimensional Hilbert space \mathcal{H} , we define a **unitary representation** to be a smooth homomorphism:

$$\rho: K \to \mathrm{U}(\mathcal{H})$$

where $U(\mathcal{H})$ is the group of unitary operators on a Hilbert space H. When $H = \mathbb{C}^n$ we also call U(H) the **unitary group** U(n).

Compact Lie groups have lots of unitary representations:

Exercise 4 Suppose $\rho: K \to \operatorname{GL}(V)$ is a (finite-dimensional) representation of a compact Lie group. Show that there is an inner product on V that is invariant under ρ , so that letting \mathcal{H} denote V made into a Hilbert space with this inner product, we have

$$\rho: K \to U(\mathcal{H}).$$

The exercises we saw for complex-analytic representations all have analogues for unitary representations:

Exercise 5 Show that SU(n) is a compact Lie group, and the obvious representation of SU(n) on \mathbb{C}^n is unitary.

Exercise 6 Show that if $\rho, \sigma: G \to \operatorname{GL}(V)$ are unitary representations, so are $\rho \oplus \sigma$ and $\rho \otimes \sigma$.

Exercise 7 Show that any subrepresentation of a unitary representation is unitary.

But, the really cool part is that when G is a complex simple Lie group and K is its maximal compact subgroup, the *complex-analytic* representations of G correspond in a one-to-way to *unitary* representations of K. This fact was called the **unitarian trick** by Hermann Weyl, who used it to do great things. Let's state it a bit more precisely:

Theorem 1 Suppose G is a complex simple Lie group and K is its maximal compact subgroup. Given a (finite-dimensional) complex-analytic representation

$$\rho: G \to \mathrm{GL}(V),$$

there exists an inner product on V making $\rho|_{K}$ into a unitary representation. Conversely, given a (finite-dimensional) unitary representation

$$\rho: K \to \mathrm{U}(H),$$

there exists a unique extension of ρ to a complex-analytic representation of G on the vector space H.

2 The Weight Lattice

Now say we have our favorite kind of Lie group G: a simply-connected complex simple Lie group. Say someone hands us a complex-analytic representation of G. We want to understand it and classify it. By the above theorem, we can think of it as a unitary representation of the maximal compact Kwithout losing any information.

So, let's do that: say we have unitary representation ρ of K on a finite-dimensional Hilbert space H. What do we do now? Since the maximal torus T is a subgroup of K, we get a unitary representation of T:

$$\rho|_T: T \to \mathrm{U}(H).$$

And in fact, the maximal torus is big enough that we can completely recover ρ from $\rho|_T$. This is not supposed to be obvious! But it's *great*, because unitary representations of tori are incredibly easy to understand.

Here's how we understand them. Any unitary representation of a torus

$$\alpha: T \to \mathrm{U}(H)$$

can be composed with the exponential map to give a unitary representation of the vector space \mathfrak{t} , thought of as a group:

$$\beta = \alpha e.$$

Clearly β is trivial on the kernel of e:

$$\beta(x) = 1$$
 for all $x \in L$.

Conversely, it's easy to see a representation

 $\beta: \mathfrak{t} \to \mathrm{U}(H)$

comes from a representation α as above iff β is trivial on L. Even better, since the exponential map is onto, knowing β tells us α . It's also easy to see that β is irreducible iff α is.

So, we just need to understand unitary representations

$$\beta: \mathfrak{t} \to \mathrm{U}(H)$$

that are trivial on L. Let's start with irreducible ones. By Schur's Lemma, an irreducible representation of an abelian group is 1-dimensional. In this case, $\beta(x)$ is just multiplication by some unit complex number; to be a representation we also need

$$\beta(x+y) = \beta(x)\beta(y).$$

So, it's easy to see that we get all *irreducible* unitary representations of \mathfrak{t} from elements ℓ of the dual vector space \mathfrak{t}^* , like this:

$$\beta(x) = e^{2\pi i \ell(x)}$$

For this to be trivial on L we need

$$\ell(x) \in \mathbb{Z}$$
 for all $x \in L$.

This means that ℓ needs to lie in the set

$$L^* = \{ \ell \in \mathfrak{t}^* : \ \ell(x) \in \mathbb{Z} \text{ for all } x \in L \}.$$

In fact L^* is a lattice in \mathfrak{t}^* just as L is a lattice in $\mathfrak{t}!$ We call L^* the **dual lattice** of L. Summarizing what we've seen so far:

Theorem 2 An irreducible unitary representation α of a torus T is specified by choosing a point ℓ in the dual lattice L^* .

We call the point $\ell \in L^*$ the weight of the representation. When T is the maximal torus of a simply-connected compact simple Lie group K, we call L^* the weight lattice of K.

But what if α fails to be irreducible? Then it's a *direct sum* of irreducible representations — and in an essentially unique way. To specify each of these irreducible representations, we pick a point in L^* . We can pick the same point more than once. But we need to pick just finitely many points, since H is finite-dimensional. So:

Theorem 3 Finite-dimensional unitary representation ρ of a torus T are classified up to unitary equivalence by maps $d: L^* \to \mathbb{N}$

$$\sum d(\ell) < \infty$$

 $\ell \in L^*$

such that

The map d says how many times each irreducible unitary representation of T shows up in ρ . The theorem says that given any map $d: L^* \to \mathbb{N}$ with $\sum_{\ell \in L^*} d(\ell) < \infty$, there exists a unitary representation ρ with this d. Moreover, it says that two unitary representations of T are unitarily equivalent iff they have the same d. Here we say $\rho: K \to U(H)$ and $\rho': K \to U(H')$ are **unitarily equivalent** if there is unitary operator $U: H \to H'$ such that

$$\rho'(k)U = U\rho(k)$$

for all $k \in K$.

For example, say we have a unitary representation of the circle group:

$$\alpha: \mathrm{U}(1) \to \mathrm{U}(H).$$

Here $\mathfrak{u}(1) \cong \mathbb{R}$ and $L \subseteq \mathbb{R}$ is just the set of integers. So, to specify a unitary irreducible representation of U(1) we pick an integer ℓ . Concretely, it goes like this:

$$\alpha(e^{i\theta}) = e^{i\ell\theta}.$$

In general, unitary representations of U(1) are classified by maps

$$d{:}\,\mathbb{Z}\to\mathbb{N}$$

as in the theorem.