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1 Representations of Lie Groups

We’ve been having some fun getting lattices from simply-connected complex simple Lie groups. If
someone hands us one of these, say G, we first choose a maximal compact subgroup K ⊆ G. They’re
all conjugate inside G, so it doesn’t matter which one we choose. Then, we choose a maximal torus
T ⊆ K. Again, they’re all conjugate inside K, so it doesn’t matter which one we choose. Then we
can work out the Lie algebra t of T and find a lattice

L = ker e =⊆ t,

where
e: t → T
x 7→ exp(2πx).

So far we’ve done this for G = SL(3,C) and K = SL(4,C). The other SL(n,C)’s work similarly, and
soon we’ll do even more examples. It’s a lot of fun.

But, what’s it all good for?
Among other things, it’s good for classifying the complex-analytic representations of G, and the

unitary representations of K. So, we need a word or two about these.
Remember that a representation of any Lie group H is a smooth homomorphism

ρ:H → GL(V )

where V is a vector space and GL(V ) is the group of invertible linear transformations of V . In what
follows we’ll always assume V is finite-dimensional. When V = Cn we also call GL(V ) the general
linear group GL(n,C).

Now, the group GL(V ) is always a complex manifold: we can cover it with coordinate charts
that look like Cn, with complex-analytic transition functions. It makes sense to talk about complex-
analytic maps between complex manifolds. And indeed, GL(V ) is a complex Lie group: a complex
manifold where the functions describing multiplication and inverses are complex analytic. To see
this, just use the usual formulas for multiplying and taking inverses of matrices.

If H is a complex Lie group, we say a representation ρ:H → GL(V ) is complex-analytic if it is
complex-analytic as a map between complex manifolds. Such representations are easy to come by:

Exercise 1 Show that SL(n,C) is a complex Lie group, and the obvious representation of SL(n,C)
on Cn is complex analytic.

Exercise 2 Show that if ρ, σ:G → GL(V ) are complex-analytic representations, so are ρ ⊕ σ and
ρ⊗ σ.

Exercise 3 Show that any subrepresentation of a complex-analytic representation is complex-analytic.

On the other hand, unitary representations are also nice. Given a Lie group H and a finite-
dimensional Hilbert space H, we define a unitary representation to be a smooth homomorphism:

ρ:K → U(H)

where U(H) is the group of unitary operators on a Hilbert space H . When H = Cn we also call
U(H) the unitary group U(n).

Compact Lie groups have lots of unitary representations:
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Exercise 4 Suppose ρ:K → GL(V ) is a (finite-dimensional) representation of a compact Lie group.
Show that there is an inner product on V that is invariant under ρ, so that letting H denote V made
into a Hilbert space with this inner product, we have

ρ:K → U(H).

The exercises we saw for complex-analytic representations all have analogues for unitary repre-
sentations:

Exercise 5 Show that SU(n) is a compact Lie group, and the obvious representation of SU(n) on
Cn is unitary.

Exercise 6 Show that if ρ, σ:G→ GL(V ) are unitary representations, so are ρ⊕ σ and ρ⊗ σ.

Exercise 7 Show that any subrepresentation of a unitary representation is unitary.

But, the really cool part is that when G is a complex simple Lie group and K is its maximal
compact subgroup, the complex-analytic representations of G correspond in a one-to-way to unitary
representations of K. This fact was called the unitarian trick by Hermann Weyl, who used it to
do great things. Let’s state it a bit more precisely:

Theorem 1 Suppose G is a complex simple Lie group and K is its maximal compact subgroup.
Given a (finite-dimensional) complex-analytic representation

ρ:G→ GL(V ),

there exists an inner product on V making ρ|K into a unitary representation. Conversely, given a
(finite-dimensional) unitary representation

ρ:K → U(H),

there exists a unique extension of ρ to a complex-analytic representation of G on the vector space
H.

2 The Weight Lattice

Now say we have our favorite kind of Lie group G: a simply-connected complex simple Lie group.
Say someone hands us a complex-analytic representation of G. We want to understand it and classify
it. By the above theorem, we can think of it as a unitary representation of the maximal compact K
without losing any information.

So, let’s do that: say we have unitary representation ρ of K on a finite-dimensional Hilbert
space H . What do we do now? Since the maximal torus T is a subgroup of K, we get a unitary
representation of T :

ρ|T :T → U(H).

And in fact, the maximal torus is big enough that we can completely recover ρ from ρ|T . This is not
supposed to be obvious! But it’s great, because unitary representations of tori are incredibly easy
to understand.

Here’s how we understand them. Any unitary representation of a torus

α:T → U(H)

can be composed with the exponential map to give a unitary representation of the vector space t,
thought of as a group:

β = αe.
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Clearly β is trivial on the kernel of e:

β(x) = 1 for all x ∈ L.

Conversely, it’s easy to see a representation

β: t→ U(H)

comes from a representation α as above iff β is trivial on L. Even better, since the exponential map
is onto, knowing β tells us α. It’s also easy to see that β is irreducible iff α is.

So, we just need to understand unitary representations

β: t→ U(H)

that are trivial on L. Let’s start with irreducible ones. By Schur’s Lemma, an irreducible represen-
tation of an abelian group is 1-dimensional. In this case, β(x) is just multiplication by some unit
complex number; to be a representation we also need

β(x + y) = β(x)β(y).

So, it’s easy to see that we get all irreducible unitary representations of t from elements ` of the dual
vector space t∗, like this:

β(x) = e2πi`(x).

For this to be trivial on L we need

`(x) ∈ Z for all x ∈ L.

This means that ` needs to lie in the set

L∗ = {` ∈ t∗ : `(x) ∈ Z for all x ∈ L}.

In fact L∗ is a lattice in t∗ just as L is a lattice in t! We call L∗ the dual lattice of L.
Summarizing what we’ve seen so far:

Theorem 2 An irreducible unitary representation α of a torus T is specified by choosing a point `
in the dual lattice L∗.

We call the point ` ∈ L∗ the weight of the representation. When T is the maximal torus of a
simply-connected compact simple Lie group K, we call L∗ the weight lattice of K.

But what if α fails to be irreducible? Then it’s a direct sum of irreducible representations — and
in an essentially unique way. To specify each of these irreducible representations, we pick a point
in L∗. We can pick the same point more than once. But we need to pick just finitely many points,
since H is finite-dimensional. So:

Theorem 3 Finite-dimensional unitary representation ρ of a torus T are classified up to unitary
equivalence by maps

d:L∗ → N

such that ∑

`∈L∗
d(`) <∞.
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The map d says how many times each irreducible unitary representation of T shows up in ρ. The
theorem says that given any map d:L∗ → N with

∑
`∈L∗ d(`) <∞, there exists a unitary represen-

tation ρ with this d. Moreover, it says that two unitary representations of T are unitarily equivalent
iff they have the same d. Here we say ρ:K → U(H) and ρ′:K → U(H ′) are unitarily equivalent
if there is unitary operator U :H → H ′ such that

ρ′(k)U = Uρ(k)

for all k ∈ K.
For example, say we have a unitary representation of the circle group:

α: U(1)→ U(H).

Here u(1) ∼= R and L ⊆ R is just the set of integers. So, to specify a unitary irreducible representation
of U(1) we pick an integer `. Concretely, it goes like this:

α(eiθ) = ei`θ.

In general, unitary representations of U(1) are classified by maps

d:Z→ N

as in the theorem.
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