Lie Theory Through Examples

John Baez
Lecture 4

1 Classifying Unitary Representations: A

Last time we saw how to classify unitary representations of a torus T using its weight lattice L^{*} : the dual of the lattice L that's the kernel of the exponential map $e: \mathfrak{t} \rightarrow T$. Now we should study some examples. But first, a quick review:

Any point $\ell \in L^{*}$ gives a 1 -dimensional representation of T

$$
\rho_{\ell}: T \rightarrow \mathrm{U}(1)
$$

with

$$
\rho_{\ell}(e(x))=e^{2 \pi i \ell(x)}
$$

for $x \in \mathrm{t}$. We call this the weight- ℓ representation. This representation is irreducible and unitary.
Every irreducible unitary representations of T is unitarily equivalent to a weight- ℓ representation for some ℓ. Even better, every unitary representation of T is a big direct sum, where we take the direct sum of $d(\ell)$ copies of the weight- ℓ representation, and then the direct sum over all ℓ. So, we can describe a unitary representation of T by a function

$$
d: L^{*} \rightarrow \mathbb{N}
$$

This function d deserves a snappy name, so let's call it the weighting of the representation. We call $d(\ell)$ the multiplicity of the weight ℓ.

More generally, if

$$
\rho: K \rightarrow \mathrm{U}(H)
$$

is a unitary representation of a compact simply-connected simple Lie group, we can restrict ρ to the maximal torus $T \subseteq K$ and then compute d as above. We then have the following amazing fact, which we will not prove here:

Theorem 1 Two unitary representation of K are unitarily equivalent if and only if they have the same weighting

$$
d: L^{*} \rightarrow \mathbb{N}
$$

Now let's do some examples. First let's do the case of A_{1} - an example that produces such a dull lattice that we skipped it on our first tour. This Dynkin diagram corresponds to $K=\mathrm{SU}(2)$. As usual, we get a maximal torus consisting of diagonal matrices:

$$
T=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right): a, b \in \mathrm{U}(1), a b=1\right\} .
$$

but now this is a 1-dimensional torus, isomorphic to $\mathrm{U}(1)$ as follows:

$$
e^{i \theta} \mapsto\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right) .
$$

So, the Lie algebra \mathfrak{t} of the maximal torus is isomorphic to \mathbb{R}, and if we think of it this way, the exponential map is

$$
\begin{array}{rll}
e: \mathfrak{t} & \rightarrow T & \\
x & \mapsto
\end{array}\left(\begin{array}{cc}
e^{2 \pi i x} & 0 \\
0 & e^{-2 \pi i x}
\end{array}\right)
$$

So, the lattice L is just $\mathbb{Z} \subseteq \mathbb{R}$.
So, the $\mathbf{A}_{\mathbf{1}}$ lattice is just the integers! Similarly, the dual \mathfrak{t}^{*} is also isomorphic to \mathbb{R}, and the dual lattice L^{*} is also isomorphic to \mathbb{Z}.

But now let's take some unitary representation of $\operatorname{SU}(2)$ and see how it gives a map

$$
d: \mathbb{Z} \rightarrow \mathbb{N}
$$

For example, let's try the representation where $\mathrm{SU}(2)$ acts on \mathbb{C}^{2} in the obvious way. If we write an element of \mathbb{C}^{2} as a column vector

$$
\binom{a}{b}
$$

then for any $x \in \mathfrak{t}$, we have

$$
e(x)=\left(\begin{array}{cc}
e^{2 \pi i x} & 0 \\
0 & e^{-2 \pi i x}
\end{array}\right)
$$

acts on it to give

$$
\binom{e^{2 \pi i x} a}{e^{-2 \pi i x} b}
$$

Note that \mathbb{C}^{2} is a direct sum of two irreducible representations of T. These subrepresentations are spanned by

$$
z_{1}=\binom{1}{0}
$$

and

$$
z_{2}=\binom{0}{1}
$$

respectively. Since

$$
e(x) z_{1}=e^{2 \pi x} z_{1}
$$

and

$$
e(x) z_{2}=e^{-2 \pi x} z_{2}
$$

the weights of these irreps are 1 and -1 , respectively. So, our representation corresponds to a weighting

$$
d: L^{*} \rightarrow \mathbb{N}
$$

that's zero except at ± 1, where it equals one. We can draw it like this:

The tiny dots are weights ℓ with multiplicity zero: $d(\ell)=0$. We draw them just so we can see the whole weight lattice. The bigger dots are the weights with multiplicity 1.

Since $\mathrm{SU}(2)$ has a unitary representation on \mathbb{C}^{2}, it also has one on $S^{n} \mathbb{C}^{2}$, the nth symmetrized tensor power of \mathbb{C}^{2}. Elements of this space are degree- n homogeneous polynomials in two variables, say z_{1} and z_{2}. When $n=1$ we're back to the example we just saw, where

$$
\begin{aligned}
& e(x) z_{1}=e^{2 \pi x} z_{1} \\
& e(x) z_{2}=e^{-2 \pi x} z_{2}
\end{aligned}
$$

for $x \in \mathfrak{t}$. For general $n, S^{n} \mathbb{C}^{2}$ has a basis of monomials $z_{1}^{p} z_{2}^{q}$ where $p+q=n$. It's easy to check that

$$
e(x) z_{1}^{p} z_{2}^{q}=e^{2 \pi i(p-q)} z_{1}^{p} z_{2}^{q}
$$

so each of these monomials spans a 1-dimensional irreducible representation of $T \subseteq \mathrm{SU}(2)$. The weights of these representations are the numbers $p-q$, or in other words:

$$
n, n-2, \ldots, 2-n,-n .
$$

To draw this, draw the integers and then draw a single circle around the points from $-n$ to n, skipping every other one.

Here's the picture for $n=2$:

As you can see, this is a 3 -dimensional representation. In fact this representation is very important: it's equivalent to the representation where $g \in \mathrm{SU}(2)$ acts on a matrix $T \in \mathfrak{s l}(2, \mathbb{C})$ by:

$$
\rho(g) T=g T g^{-1}
$$

In fact,

$$
\mathfrak{s l}(2, \mathbb{C}) \cong \mathbb{C} \otimes \mathfrak{s u}(2)
$$

and this representation is just the 'complexification' of the adjoint representation of $\mathrm{SU}(2)$, where it acts on its own Lie algebra.

Here's the picture for $n=3$:

As you can see, this is a 4-dimensional representation. In general, the space $S^{n} \mathbb{C}$ gives an $(n+1)$ dimensional representaiton of $\mathrm{SU}(2)$. It's irreducible, and in fact these are all the irreps of $\mathrm{SU}(2)$! Physicists call the rep of $\mathrm{SU}(2)$ on $S^{n} \mathbb{C}$ the spin- j representation, where $j=n / 2$.

$2 \mathrm{SU}(2)$ versus $\mathrm{SO}(3)$

We're calling the Lie group $\mathrm{SU}(2)$ 'simple', but that doesn't mean it has no interesting normal subgroups! Remember, we say a Lie group is simple if all its normal subgroups are discrete - or equivalently, if its Lie algebra is simple. It's easy to see that the center of $\mathrm{SU}(2)$ consists of the matrices ± 1 : this is a discrete normal subgroup, and in fact the only one except for the trivial subgroup.

So, we can form the quotient $\operatorname{SU}(2) /\{ \pm 1\}$, and this will again be a simple Lie group. In fact, it's isomorphic to $\mathrm{SO}(3)$! Remember:

Definition 1 The orthogonal group $\mathrm{O}(n)$ is the group of all linear transformations $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that preserve the usual inner product on \mathbb{R}^{n} :

$$
\langle g v, g w\rangle=\langle v, w\rangle
$$

for all $v, w \in \mathbb{R}^{n}$. Equivalently,

$$
\mathrm{O}(n)=\left\{g \in \mathrm{GL}(n, \mathbb{R}): g^{*} g=1\right\}
$$

The special orthogonal group is

$$
\mathrm{SO}(n)=\{g \in \mathrm{O}(n, \mathbb{R}): \operatorname{det}(g)=1\}
$$

Any product of an odd number of reflections gives an element of $\mathrm{O}(n)$ that's not in $\mathrm{SO}(n)$, and in fact these are all such elements. Products of even numbers of reflections give all elements of $\operatorname{SO}(n)$.

Anyway, it's pretty easy to get a homomorphism

$$
\rho: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3)
$$

Namely, we let $g \in \mathrm{SU}(2)$ act on the Lie algebra $\mathfrak{s u}(2)$ by the adjoint representation

$$
\operatorname{Ad}(g) v=g v g^{-1}
$$

This preserves the obvious inner product on $\mathfrak{s u}(2)$, the one we've already seen:

$$
\langle v, w\rangle=-\operatorname{tr}(v w) .
$$

Here's why:

$$
\langle g v, g w\rangle=-\operatorname{tr}\left(g v g^{-1} g w g^{-1}\right)=-\operatorname{tr}(v w)=\langle v, w\rangle .
$$

So, if we identify $\mathfrak{s u}(2)$ with this inner product with \mathbb{R}^{3} with its standard inner product, we can think of Ad as a homomorphism $\rho: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$.

It's easy to see that $\pm 1 \in \mathrm{SU}(2)$ are in the kernel of ρ, since they commute with all 2×2 matrices. In fact it's easy to check that only scalar multiples of the identity operator can commute with everyone in $\mathfrak{s u}(2)$ - just assume a matrix commutes with all three Pauli matrices, and see what it must be like. So, the kernel of ρ is exactly $\{ \pm 1\}$. It's also easy to check:

Exercise 1 The homomorphism $\rho: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ is onto.
So,

$$
\mathrm{SU}(2) /\{ \pm 1\} \cong \mathrm{SO}(3)
$$

We say $\mathrm{SU}(2)$ is a double cover of $\mathrm{SO}(3)$.
Now, if we take a maximal torus $T^{\prime} \subseteq \mathrm{SU}(2)$, and map it to $\mathrm{SO}(3)$ via ρ, it gets sent to a maximal torus $T \subseteq \mathrm{SU}(2)$. Because ρ is $2-1$, we can think of T and T^{\prime} as having the same Lie algebra \mathfrak{t}, but with the map

$$
\mathfrak{t} / L \cong T \xrightarrow{\rho} T^{\prime} \cong \mathfrak{t} / L^{\prime}
$$

being 2-1. This means $L \subset L^{\prime}-$ and indeed L must be a lattice with half the density of L^{\prime}.
This, in turn, means that $L^{\prime *}$ is a sublattice of L^{*} - with half the density of $L^{*}!$ In the previous section, we showed how to think of the weight lattice L^{*} of $\operatorname{SU}(2)$ as the integers, \mathbb{Z}. So, in this picture, the weight lattice of $\mathrm{SO}(3)$ consists of the even integers, $2 \mathbb{Z}$.

Any representation of $\mathrm{SU}(2)$ coming from a representation of $\mathrm{SO}(3)$ must have its weights lying in this sublattice. So, if we look at our results from the previous section, we can guess that the rep of $\mathrm{SU}(2)$ on $S^{n}\left(\mathbb{C}^{2}\right)$ comes from a representation of $\mathrm{SO}(3)$ when n is even. And it's true.

3 Classifying Unitary Representations: \mathbf{A}_{2}

We know the lattice L for A_{2} :

What does L^{*} look like? We can cheat and use our inner product on A_{2} to identify the vector space \mathfrak{t} containing L with its dual vector space. Then the dual lattice L^{*} looks hexagonal, a lot like $L \ldots$ but beware, it's not the same hexagonal lattice.

Exercise 2 Draw L^{*} and L in the same picture.
Exercise 3 Draw the weighting d: $L^{*} \rightarrow \mathbb{N}$ for the obvious representation of $\mathrm{SU}(3)$ on \mathbb{C}^{3} - the so-called tautologous representation.

Exercise 4 Draw the weighting $d: L^{*} \rightarrow \mathbb{N}$ for the dual of the tautologous representation of $\mathrm{SU}(3)$, on $\left(\mathbb{C}^{3}\right)^{*}$.

Exercise 5 Draw the weighting $d: L^{*} \rightarrow \mathbb{N}$ for the tensor product of the above two representations of $\mathrm{SU}(3)$. Hint: use the following exercise.

Exercise 6 Suppose ρ and σ are unitary representations of a simply-connected compact simple Lie group K. Let

$$
d_{\rho}, d_{\sigma}: L^{*} \rightarrow \mathbb{N}
$$

be the corresponding functions. Show that

$$
d_{\rho \otimes \sigma}=d_{\rho} * d_{\sigma}
$$

where the convolution product $*$ is defined by

$$
(f * g)(\ell)=\sum_{\ell^{\prime}+\ell^{\prime \prime}=\ell} f\left(\ell^{\prime}\right) g\left(\ell^{\prime \prime}\right)
$$

The tensor product $\mathbb{C}^{3} \otimes\left(\mathbb{C}^{3}\right)^{*}$ is isomorphic to the space of 3×3 matrices, which becomes a representation of $\mathrm{SU}(3)$ via

$$
\rho(g) T=g T g^{-1}
$$

for $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$. This representation has a 1-dimensional subrepresentation consisting of multiples of the identity matrix. Indeed, it's the direct sum of this 1d rep and an 8-dimensional subrepresentation that consists of the traceless matrices:

$$
\mathbb{C}^{3} \otimes\left(\mathbb{C}^{3}\right)^{*} \cong \mathbb{C} \oplus \mathfrak{s l}(3, \mathbb{C})
$$

Exercise 7 Draw the function $d: L^{*} \rightarrow \mathbb{N}$ for the the above representations of $\mathrm{SU}(3)$ on \mathbb{C} and $\mathfrak{s l}(3, \mathbb{C})$. Hint: use the following exercise.

Exercise 8 Suppose ρ and σ are unitary representations of a simply-connected compact simple Lie group K. Let

$$
d_{\rho}, d_{\sigma}: L^{*} \rightarrow \mathbb{N}
$$

be the corresponding functions. Show that

$$
d_{\rho \oplus \sigma}=d_{\rho}+d_{\sigma} .
$$

Your answer to Exercise 2 should look a bit like this:

The big dots are in the lattice L, while the small ones and the big ones are in L^{*}. It's easy to see that $L \subseteq L^{*}$, since the inner product of any two vectors in L is an integer.

Your picture of the weighting for the tautologous representation of $\mathrm{SU}(3)$ should look a bit like this:

Here the tiny dots are weights with multiplicity 0 , while the bigger ones have multiplicity 1 . Similarly, your picture of the weighting for the dual of the tautologous representation should look a bit like this:

If your pictures look rotated or upside-down compared to mine, that's no big deal: it's just an arbitrary convention. Finally, your picture of the weighting for the representation of $\mathrm{SU}(3)$ on $\mathfrak{s l}(3, \mathbb{C})$ should look a bit like this:

Here the tiny dots have multiplicity 0 , the bigger ones has multiplicity 1 , and the one with a circle around it has multiplicity 2 . If we get a weight with an even larger multiplicity, we can just draw more circles around it!

In general, the weighting for an irreducible representation of $\mathrm{SU}(3)$ will look like this. First, draw a big hexagon centered at the origin with edge lengths a, b, a, b, a, b. The multiplicity is 1 for weights on the the edge of the hexagon, 2 around the next hexagon inside, and so on, until the hexagon degenerates to a triangle. At that point the multiplicity is constant, namely $\min (a, b)+1$. The triangle can be either 'right-side up' or 'upside-down' - as we've seen in the tautologous rep and its dual.

