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John Baez

Lecture 4

1 Classifying Unitary Representations: A1

Last time we saw how to classify unitary representations of a torus T using its weight lattice L∗:
the dual of the lattice L that’s the kernel of the exponential map e: t → T . Now we should study
some examples. But first, a quick review:

Any point ℓ ∈ L∗ gives a 1-dimensional representation of T

ρℓ:T → U(1)

with
ρℓ(e(x)) = e2πiℓ(x)

for x ∈ t. We call this the weight-ℓ representation. This representation is irreducible and unitary.
Every irreducible unitary representations of T is unitarily equivalent to a weight-ℓ representation

for some ℓ. Even better, every unitary representation of T is a big direct sum, where we take the
direct sum of d(ℓ) copies of the weight-ℓ representation, and then the direct sum over all ℓ. So, we
can describe a unitary representation of T by a function

d:L∗ → N.

This function d deserves a snappy name, so let’s call it the weighting of the representation. We call
d(ℓ) the multiplicity of the weight ℓ.

More generally, if
ρ:K → U(H)

is a unitary representation of a compact simply-connected simple Lie group, we can restrict ρ to
the maximal torus T ⊆ K and then compute d as above. We then have the following amazing fact,
which we will not prove here:

Theorem 1 Two unitary representation of K are unitarily equivalent if and only if they have the

same weighting

d:L∗ → N.

Now let’s do some examples. First let’s do the case of A1 — an example that produces such a
dull lattice that we skipped it on our first tour. This Dynkin diagram corresponds to K = SU(2).
As usual, we get a maximal torus consisting of diagonal matrices:

T = {

(

a 0
0 b

)

: a, b ∈ U(1), ab = 1}.

but now this is a 1-dimensional torus, isomorphic to U(1) as follows:

eiθ 7→

(

eiθ 0
0 e−iθ

)

.

So, the Lie algebra t of the maximal torus is isomorphic to R, and if we think of it this way, the
exponential map is

e: t → T

x 7→

(

e2πix 0
0 e−2πix

)
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So, the lattice L is just Z ⊆ R.
So, the A1 lattice is just the integers! Similarly, the dual t∗ is also isomorphic to R, and the

dual lattice L∗ is also isomorphic to Z.
But now let’s take some unitary representation of SU(2) and see how it gives a map

d:Z → N.

For example, let’s try the representation where SU(2) acts on C
2 in the obvious way. If we write an

element of C2 as a column vector
(

a
b

)

then for any x ∈ t, we have

e(x) =

(

e2πix 0
0 e−2πix

)

acts on it to give
(

e2πix a
e−2πix b

)

Note that C2 is a direct sum of two irreducible representations of T . These subrepresentations are
spanned by

z1 =

(

1
0

)

and

z2 =

(

0
1

)

,

respectively. Since
e(x)z1 = e2πxz1

and
e(x)z2 = e−2πxz2,

the weights of these irreps are 1 and −1, respectively. So, our representation corresponds to a
weighting

d:L∗ → N

that’s zero except at ±1, where it equals one. We can draw it like this:
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The tiny dots are weights ℓ with multiplicity zero: d(ℓ) = 0. We draw them just so we can see the
whole weight lattice. The bigger dots are the weights with multiplicity 1.

Since SU(2) has a unitary representation on C
2, it also has one on Sn

C
2, the nth symmetrized

tensor power of C2. Elements of this space are degree-n homogeneous polynomials in two variables,
say z1 and z2. When n = 1 we’re back to the example we just saw, where

e(x)z1 = e2πxz1
e(x)z2 = e−2πxz2

for x ∈ t. For general n, Sn
C

2 has a basis of monomials zp1z
q
2 where p + q = n. It’s easy to check

that
e(x)zp1z

q
2 = e2πi(p−q)zp1z

q
2 ,
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so each of these monomials spans a 1-dimensional irreducible representation of T ⊆ SU(2). The
weights of these representations are the numbers p− q, or in other words:

n, n− 2, . . . , 2− n,−n.

To draw this, draw the integers and then draw a single circle around the points from −n to n,
skipping every other one.

Here’s the picture for n = 2:
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As you can see, this is a 3-dimensional representation. In fact this representation is very important:
it’s equivalent to the representation where g ∈ SU(2) acts on a matrix T ∈ sl(2,C) by:

ρ(g)T = gTg−1

In fact,
sl(2,C) ∼= C⊗ su(2)

and this representation is just the ‘complexification’ of the adjoint representation of SU(2), where it
acts on its own Lie algebra.

Here’s the picture for n = 3:
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As you can see, this is a 4-dimensional representation. In general, the space Sn

C gives an (n+ 1)-
dimensional representaiton of SU(2). It’s irreducible, and in fact these are all the irreps of SU(2)!
Physicists call the rep of SU(2) on Sn

C the spin-j representation, where j = n/2.

2 SU(2) versus SO(3)

We’re calling the Lie group SU(2) ‘simple’, but that doesn’t mean it has no interesting normal
subgroups! Remember, we say a Lie group is simple if all its normal subgroups are discrete — or
equivalently, if its Lie algebra is simple. It’s easy to see that the center of SU(2) consists of the
matrices ±1: this is a discrete normal subgroup, and in fact the only one except for the trivial
subgroup.

So, we can form the quotient SU(2)/{±1}, and this will again be a simple Lie group. In fact,
it’s isomorphic to SO(3)! Remember:

Definition 1 The orthogonal group O(n) is the group of all linear transformations g:Rn → R
n

that preserve the usual inner product on R
n:

〈gv, gw〉 = 〈v, w〉

for all v, w ∈ R
n. Equivalently,

O(n) = {g ∈ GL(n,R): g∗g = 1}.

The special orthogonal group is

SO(n) = {g ∈ O(n,R): det(g) = 1}.
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Any product of an odd number of reflections gives an element of O(n) that’s not in SO(n), and in
fact these are all such elements. Products of even numbers of reflections give all elements of SO(n).

Anyway, it’s pretty easy to get a homomorphism

ρ: SU(2) → SO(3).

Namely, we let g ∈ SU(2) act on the Lie algebra su(2) by the adjoint representation

Ad(g)v = gvg−1.

This preserves the obvious inner product on su(2), the one we’ve already seen:

〈v, w〉 = −tr(vw).

Here’s why:
〈gv, gw〉 = −tr(gvg−1gwg−1) = −tr(vw) = 〈v, w〉.

So, if we identify su(2) with this inner product with R
3 with its standard inner product, we can

think of Ad as a homomorphism ρ: SU(2) → SO(3).
It’s easy to see that ±1 ∈ SU(2) are in the kernel of ρ, since they commute with all 2 × 2

matrices. In fact it’s easy to check that only scalar multiples of the identity operator can commute
with everyone in su(2) — just assume a matrix commutes with all three Pauli matrices, and see
what it must be like. So, the kernel of ρ is exactly {±1}. It’s also easy to check:

Exercise 1 The homomorphism ρ: SU(2) → SO(3) is onto.

So,
SU(2)/{±1} ∼= SO(3).

We say SU(2) is a double cover of SO(3).
Now, if we take a maximal torus T ′ ⊆ SU(2), and map it to SO(3) via ρ, it gets sent to a maximal

torus T ⊆ SU(2). Because ρ is 2-1, we can think of T and T ′ as having the same Lie algebra t, but
with the map

t/L ∼= T
ρ
→ T ′ ∼= t/L′

being 2-1. This means L ⊂ L′ — and indeed L must be a lattice with half the density of L′.
This, in turn, means that L′∗ is a sublattice of L∗ — with half the density of L∗! In the previous

section, we showed how to think of the weight lattice L∗ of SU(2) as the integers, Z. So, in this
picture, the weight lattice of SO(3) consists of the even integers, 2Z.

Any representation of SU(2) coming from a representation of SO(3) must have its weights lying
in this sublattice. So, if we look at our results from the previous section, we can guess that the rep
of SU(2) on Sn(C2) comes from a representation of SO(3) when n is even. And it’s true.

3 Classifying Unitary Representations: A2

We know the lattice L for A2:
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What does L∗ look like? We can cheat and use our inner product on A2 to identify the vector
space t containing L with its dual vector space. Then the dual lattice L∗ looks hexagonal, a lot like
L... but beware, it’s not the same hexagonal lattice.

Exercise 2 Draw L∗ and L in the same picture.

Exercise 3 Draw the weighting d:L∗ → N for the obvious representation of SU(3) on C
3 — the

so-called tautologous representation.

Exercise 4 Draw the weighting d:L∗ → N for the dual of the tautologous representation of SU(3),
on (C3)∗.

Exercise 5 Draw the weighting d:L∗ → N for the tensor product of the above two representations

of SU(3). Hint: use the following exercise.

Exercise 6 Suppose ρ and σ are unitary representations of a simply-connected compact simple Lie

group K. Let

dρ, dσ:L
∗ → N

be the corresponding functions. Show that

dρ⊗σ = dρ ∗ dσ

where the convolution product ∗ is defined by

(f ∗ g)(ℓ) =
∑

ℓ′+ℓ′′=ℓ

f(ℓ′)g(ℓ′′)

The tensor product C
3 ⊗ (C3)∗ is isomorphic to the space of 3 × 3 matrices, which becomes a

representation of SU(3) via
ρ(g)T = gTg−1

for T :C3 → C
3. This representation has a 1-dimensional subrepresentation consisting of multiples of

the identity matrix. Indeed, it’s the direct sum of this 1d rep and an 8-dimensional subrepresentation
that consists of the traceless matrices:

C
3 ⊗ (C3)∗ ∼= C⊕ sl(3,C).

Exercise 7 Draw the function d:L∗ → N for the the above representations of SU(3) on C and

sl(3,C). Hint: use the following exercise.

Exercise 8 Suppose ρ and σ are unitary representations of a simply-connected compact simple Lie

group K. Let

dρ, dσ:L
∗ → N

be the corresponding functions. Show that

dρ⊕σ = dρ + dσ.

Your answer to Exercise 2 should look a bit like this:
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The big dots are in the lattice L, while the small ones and the big ones are in L∗. It’s easy to see
that L ⊆ L∗, since the inner product of any two vectors in L is an integer.

Your picture of the weighting for the tautologous representation of SU(3) should look a bit like
this:
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Here the tiny dots are weights with multiplicity 0, while the bigger ones have multiplicity 1. Similarly,
your picture of the weighting for the dual of the tautologous representation should look a bit like
this:
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If your pictures look rotated or upside-down compared to mine, that’s no big deal: it’s just an
arbitrary convention. Finally, your picture of the weighting for the representation of SU(3) on
sl(3,C) should look a bit like this:
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Here the tiny dots have multiplicity 0, the bigger ones has multiplicity 1, and the one with a circle
around it has multiplicity 2. If we get a weight with an even larger multiplicity, we can just draw
more circles around it!

In general, the weighting for an irreducible representation of SU(3) will look like this. First,
draw a big hexagon centered at the origin with edge lengths a, b, a, b, a, b. The multiplicity is 1 for
weights on the the edge of the hexagon, 2 around the next hexagon inside, and so on, until the
hexagon degenerates to a triangle. At that point the multiplicity is constant, namely min(a, b) + 1.
The triangle can be either ‘right-side up’ or ‘upside-down’ — as we’ve seen in the tautologous rep
and its dual.
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