
Math 761 Fall 2015
Homework 1 Drew Armstrong

On this homework you will further explore the idea of Galois connections. We will begin
by defining a notion of Galois connection for general posets. Let (P,≤) and (Q,≤) be posets.
A pair of maps ∗ : P � Q : ∗ is called a Galois connection if it satisfies the following property:

for all p ∈ P and q ∈ Q we have p ≤ q∗ ⇐⇒ q ≤ p∗

Problem 1. Equivalent Definition. Prove that a pair of maps ∗ : P � Q : ∗ is a Galois
connection (as defined above) if and only if the following two statements hold:

• For all p ∈ P and q ∈ Q we have

p ≤ p∗∗ and q ≤ q∗∗.

• For all p1, p2 ∈ P and q1, q2 ∈ Q we have

p1 ≤ p2 =⇒ p∗2 ≤ p∗1 and q1 ≤ q2 =⇒ q∗2 ≤ q∗1.

[Hint: Since the statements come in dual pairs, you only have to prove half of them.]

Proof. Since the definition of Galois connection is symmetric with respect to P and Q, we
never have to say which poset a given element comes from.

First, assume that for all elements x and y we have x ≤ y∗ ⇐⇒ y ≤ x∗. Substituting
y = x∗ tells us that x ≤ x∗∗ ⇐⇒ x∗ ≤ x∗. Since x∗ ≤ x∗ is always true (by definition of
partial order), we conclude that x ≤ x∗∗ for all elements x. Now consider any elements x1, x2
such that x1 ≤ x2. From the previous remark we know that x2 ≤ x∗∗2 , and then by transitivity
of partial order we have x1 ≤ x∗∗2 = (x∗2)

∗. Finally, our original assumption (with x = x1 and
y = x∗2) implies that x∗2 ≤ x∗1.

Conversely, assume that for all elements x we have x ≤ x∗∗ and for all elements x1, x2 we
have x1 ≤ x2 =⇒ x∗2 ≤ x∗1. Now let x and y be any elements, and suppose that x ≤ y∗.
Applying ∗ to both sides gives y∗∗ ≤ x∗. Then since y ≤ y∗∗, the transitivity of partial order
implies that y ≤ x∗. The implication y ≤ x∗ =⇒ x ≤ y∗ follows by switching the roles of x
and y. �

Recall that a lattice is a poset (P,≤) in which every pair of elements x, y ∈ P has a
(necessarily unique) join x ∨ y and meet x ∧ y. By induction, any finite subset A ⊆ P also
has a join

∨
A ∈ P and meet

∧
A ∈ P .

Problem 2. Lattice Structure. Let ∗ : P � Q : ∗ be a Galois connection. If, in addition,
P and Q happen to be lattices, prove that for all p1, p2 ∈ P and q1, q2 ∈ Q we have

• p∗1 ∨ p∗2 ≤ (p1 ∧ p2)
∗ and q∗1 ∨ q∗2 ≤ (q1 ∧ q2)

∗

• p∗1 ∧ p∗2 = (p1 ∨ p2)
∗ and q∗1 ∧ q∗2 = (q1 ∨ q2)

∗

Proof. Again, due to symmetry we won’t worry which poset a given element comes from. We
will freely use the result of Problem 1.

First note that for all elements x1, x2 we have x1 ∧ x2 ≤ x1 and x1 ∧ x2 ≤ x2 by definition.
Applying ∗ to both inequalities gives x∗1 ≤ (x1 ∧ x2)

∗ and x∗2 ≤ (x1 ∧ x2)
∗; in other words,



(x1 ∧ x2)
∗ is an upper bound of x∗1 and x∗2. By the universal property of join (i.e., the join is

the “least upper bound”), we conclude that

x∗1 ∨ x∗2 ≤ (x1 ∧ x2)
∗.

Similarly, we have x1 ≤ x1 ∨x2 and x2 ≤ x1 ∨x2 by definition. Applying ∗ to both sides gives
(x1 ∨ x2)∗ ≤ x∗1 and (x1 ∨ x2)∗ ≤ x∗2; in other words, (x1 ∨ x2)∗ is a lower bound of x∗1 and x∗2.
By the universal property of meets (i.e., the meet is the “greatest lower bound”), we conclude
that

(x1 ∨ x2)
∗ ≤ x∗1 ∧ x∗2.

Finally, note that we have x∗1 ∧ x∗2 ≤ x∗1 and x∗1 ∧ x∗2 ≤ x∗2 by definition. By the definition
of Galois connection this implies that x1 ≤ (x∗1 ∧ x∗2)

∗ and x2 ≤ (x∗1 ∧ x∗2)
∗; in other words,

(x∗1 ∧ x∗2)∗ is an upper bound of x1 and x2. By the universal property of join this implies that
x1 ∨ x2 ≤ (x∗1 ∧ x∗2)

∗. Applying the definition of Galois connection once more gives

x∗1 ∧ x∗2 ≤ (x1 ∨ x2)
∗,

and putting together the previous two results gives

x∗1 ∧ x∗2 = (x1 ∨ x2)
∗.

�

In the next problem you will show that the first inequalities are sometimes strict.

Problem 3. Counterexample. Consider the usual topology on the set of real numbers R.
Let O ⊆ 2R be the collection of open sets and let C ⊆ 2R be the collection of closed sets. Let
− : 2R → 2R be the “topological closure” and let ◦ : 2R → 2R be the “topological interior”.
One can check (you don’t need to) that for all O ∈ O and C ∈ C we have

O ⊆ C◦ ⇐⇒ O− ⊆ C.

In other words, we have a Galois connection − : O � C : ◦ where O is partially ordered by
inclusion (“ ≤ ” = “ ⊆ ”) and C is partially ordered by reverse-inclusion (“≤ ” = “ ⊇ ”).
Note that O is a lattice with ∧ = ∩ and ∨ = ∪, whereas C is a lattice with ∧ = ∪ and ∨ = ∩.

In this case, find specific elements O1, O2 ∈ O and C1, C2 ∈ C such that

O−1 ∨O−2 � (O1 ∧O2)
− and C◦1 ∨ C◦2 � (C1 ∧ C2)

◦.

Proof. First I’ll verify that that this is a Galois connection (even though I didn’t ask you to
do so). Consider O ∈ O and C ∈ C , and suppose that O ⊆ C◦. Since C◦ ⊆ C (property of
interior) transitivity implies O ⊆ C. Then applying − gives O− ⊆ C− (property of closure).
Since C− = C (definition of closed) we get O− ⊆ C as desired. The other direction is similar.

Recall that we are regarding C as a poset under reverse-inclusion, so that ∧ = ∪ and ∨ = ∩.
Thus we are looking for two open sets O1, O2 such that

(O1 ∩O2)
− ( O−1 ∩O−2 .

I will take the open intervals O1 = (0, 1) and O2 = (1, 2). Then we have O1 ∩O2 = ∅ so that
(O1 ∩ O2)

− = ∅− = ∅. On the other hand, the closures are the closed intervals O−1 = [0, 1]
and O−2 = [0, 2] so that O−1 ∩O−2 = {1}, which is strictly bigger than ∅.

We are also looking for two closed sets C1, C2 such that

C◦1 ∪ C◦2 ( (C1 ∪ C1)
◦.

I will take the closed intervals C1 = [0, 1] and C2 = [1, 2]. The interiors are the open intervals
C◦1 = (0, 1) and C◦2 = (1, 2) so that C◦1 ∪ C◦2 = (0, 1) ∪ (1, 2). On the other hand we have
C1 ∪ C2 = [0, 2] so that (C1 ∪ C2)

◦ = (0, 2), which is strictly bigger than (0, 1) ∪ (1, 2). �



[Remark: The result of Problem 5 below will imply that there is an isomorphism between the
subposet C ◦ ⊆ O of “◦− closed sets” and the subposet O− ⊆ C of “−◦ closed” sets. You might
wonder (as I did) what kind of sets these are. I found out that the elements of C ◦ are called
“regular open sets” and the elements of O− are called “regular closed sets”. I wasn’t able to learn
much about them except for the following facts: (1) O− and C ◦ are Boolean lattices, (2) convex
sets and their complements are regular.]

Now you will investigate under what conditions the first inequalities in Problem 2 become
equalities.

Problem 4. Closed Elements. Let ∗ : P � Q : ∗ be a Galois connection between lattices
P and Q. We will say that p ∈ P (resp. q ∈ Q) is ∗∗-closed if p∗∗ = p (resp. q∗∗ = q).

(a) Prove that the meet of any two ∗∗-closed elements is ∗∗-closed.
(b) Prove that the following two conditions are equivalent:

• The join of any two ∗∗-closed elements is ∗∗-closed.
• For all ∗∗-closed elements p1, p2 ∈ P and q1, q2 ∈ Q we have

p∗1 ∨ p∗2 = (p1 ∧ p2)
∗ and q∗1 ∨ q∗2 = (q1 ∧ q2)

∗.

Proof. For part (a) assume that x1 and x2 are ∗∗-closed, i.e., that x∗∗1 = x1 and x∗∗2 = x2.
By definition of meet we have x1 ∧ x2 ≤ x1 and x1 ∧ x2 ≤ x2 and since ∗∗ preserves order
[because ∗ reverses order; see Problem 1] this implies that (x1 ∧ x2)

∗∗ ≤ x∗∗1 = x1 and
(x1∧x2)∗∗ ≤ x∗∗2 = x2. In other words, (x1∧x2)∗∗ is a lower bound of x1 and x2. Since x1∧x2
is the greatest lower bound this implies that (x1 ∧ x2)

∗∗ ≤ x1 ∧ x2. Combining this with the
fact that x1 ∧ x2 ≤ (x1 ∧ x2)

∗∗ [see Problem 1] gives

(x1 ∧ x2)
∗∗ = x1 ∧ x2.

In other words, x1 ∧ x2 is ∗∗-closed.
For part (b) first assume that for all x1, x2 we have x∗1 ∨ x∗2 = (x1 ∧ x2)

∗. We will show
that the join of any two ∗∗-closed elements is ∗∗-closed. So let y1, y2 be any two ∗∗-closed
elements, i.e., let y∗∗1 = y1 and y∗∗2 = y2. Then we have y1 = x∗1 and y2 = x∗2 where x1 = y∗1
and x2 = y∗2, so that

y1 ∨ y2 = x∗1 ∨ x∗2 = (x1 ∧ x2)
∗,

and this is ∗∗-closed because (x1 ∧ x2)
∗∗∗ = (x1 ∧ x2)

∗ [see Problem 5(a)].
Conversely, assume the join of any two ∗∗-closed elements is ∗∗-closed and consider any

∗∗-closed elements x1, x2. We will show that x∗1 ∨ x∗2 = (x1 ∧ x2)
∗. To do this, first note that

by definition of join we have x∗1 ≤ x∗1 ∨ x∗2 and x∗2 ≤ x∗1 ∨ x∗2. Applying ∗ to both inequalities
gives (x∗1 ∨ x∗2)

∗ ≤ x∗∗1 = x1 and (x∗1 ∨ x∗2)
∗ ≤ x∗∗2 = x2. In other words, (x∗1 ∨ x∗2)

∗ is a lower
bound of x1 and x2. Since x1 ∧ x2 is the greatest lower bound, this implies that

(1) (x∗1 ∨ x∗2)
∗ ≤ x1 ∧ x2

Since x∗1 and x∗2 are ∗∗-closed [see Problem 5(a)] we have by assumption that x∗1 ∨ x∗2 is also
∗∗-closed. Finally, apply ∗ to both sides of (1) to get

(x1 ∧ x2)
∗ ≤ (x∗1 ∨ x∗2)

∗∗ = x∗1 ∨ x∗2.

Combining this with the inequality x∗1 ∨ x∗2 ≤ (x1 ∧ x2)
∗ [see Problem 2] gives the result. �

Finally, let’s put everything together. Basically, if we have a Galois connection between
lattices in which joins of closed elements are closed, then this restricts to an isomorphism on
their sublattices of closed elements. If (P,≤) is a poset we’ll use the notation P op for the same
set of elements with the opposite partial order (and hence with meets and joins switched).



Problem 5. Galois Correspondence. Let ∗ : P � Q : ∗ be a Galois connection between
lattices P and Q. Denote the image of ∗ : P → Q by P ∗ ⊆ Q and denote the image of
∗ : Q→ P by Q∗ ⊆ P . We will think of these as subposets with the induced partial order.

(a) Prove that Q∗ ⊆ P and P ∗ ⊆ Q are precisely the subposets of ∗∗-closed elements.
(b) Prove that the restricted maps ∗ : Q∗ � P ∗ : ∗ are an isomorphism of posets:

Q∗ ≈ (P ∗)op.

(c) If, in addition, the join of any two ∗∗-closed elements is ∗∗-closed, prove that Q∗ ⊆ P
and P ∗ ⊆ Q are sublattices, and that the isomorphism from (b) is an isomorphism
of lattices.

Proof. For part (a), consider an element x∗ in the image of ∗. From Problem 2 we have
x∗ ≤ (x∗)∗∗. On the other hand, applying ∗ to both sides of the inequality x ≤ x∗∗ gives
(x∗)∗∗ = (x∗∗)∗ ≤ x∗. We conclude that (x∗)∗∗ = x∗, hence x∗ is ∗∗-closed. Conversely, let y
be ∗∗-closed. Since y = y∗∗ = (y∗)∗ we conclude that y is in the image of ∗.

For part (b) we first note that ∗ : Q∗ � P ∗ : ∗ are inverse functions (and hence bijections).
Indeed, given an element x∗ in the image of ∗ then we know from part (a) that (x∗)∗∗ = x∗.
Since ∗ reverses order [see Problem 1], we obtain a poset isomorphism Q∗ ≈ (P ∗)op.

For part (c) assume that the join of ∗∗-closed elements is ∗∗-closed. By part (a) and Problem
4(a) this implies that Q∗ ⊆ P and P ∗ ⊆ Q are sublattices. Finally, Problems 2 and 4(b) imply
that the poset isomorphism from part (b) is an isomorphism of lattices. �

[Remark: For the purpose of this problem I defined a sublattice to be a subposet of a lattice closed
under finite meets and joins. If the lattice has a 0 and 1, I don’t require that a sublattice contains
these. For example, if P and Q have top elements 1P and 1Q, respectively, then it will follow that
Q∗ and P ∗ have the same top elements. However, the bottom elements of Q∗ and P ∗ will be 1∗P
and 1∗Q, respectively, which might not equal 0P and 0Q (see the picture below). An isomorphism
of complete lattices would necessarily preserve 0 and 1. Don’t you hate all this terminology? Yeah,
I’m done with lattice theory for a while.]

Epilogue: You might ask whether the definition of Galois connection given above is more
general than the one discussed in class. The answer is: “yes and no”. The answer is “yes” in
the sense that this definition applies to more general posets. However, if P and Q happen to
be Boolean lattices then the answer is “no”. I will define a Boolean lattice as the collection of
subsets of a set U , partially ordered by inclusion. Note that the lattice operations are ∧ = ∩
and ∨ = ∪.



Problem 6. Boolean Galois Connections. Let S and T be sets and consider the cor-
responding Boolean lattices P = 2S and Q = 2T . For any relation R ⊆ S × T and for any
subsets A ⊆ S and B ⊆ T we will define the sets AR ⊆ T and BR ⊆ S as follows:

• AR = {t ∈ T : ∀a ∈ A, aRt}
• BR = {s ∈ S : ∀b ∈ B, sRb}

In class we called this an “abstract Galois connection” and we showed that it has many nice
properties. Now let ∗ : P � Q : ∗ be a Galois connection of posets in the sense defined above.
Prove that there exists a unique relation R ⊆ S × T such that for all A ⊆ S and B ⊆ T
we have

A∗ = AR and B∗ = BR.

[Hint: Consider the singleton subsets of S and T . You will need to use the fact that the power
set 2U is a complete lattice, i.e., it is possible to take the intersection and union of arbitrary
collections of subsets.]

Proof. Let S and T be sets and let ∗ : 2S � 2T : ∗ be a Galois connection of posets. That is,
for all subsets A ⊆ T and B ⊆ T we have A ⊆ B∗ ⇐⇒ B ⊆ A∗. In particular, for all elements
s ∈ S and t ∈ T we have

{s} ⊆ {t}∗ ⇐⇒ {t} ⊆ {s}∗.

Define the relation R ⊆ S × T by setting “sRt” (i.e., “(s, t) ∈ R”) whenever either of these
equivalent conditions is true.

I claim that for all A ⊆ S and B ⊆ T we have A∗ = AR and B∗ = BR. To see this, first
note that R : 2S � 2T : R is a Galois connection and so it satisfies all of the properties proved
in this homework. Indeed, for all subsets A ⊆ S and B ⊆ T we have

A ⊆ BR ⇐⇒ ∀a ∈ A, a ∈ BR

⇐⇒ ∀a ∈ A,∀b ∈ B, aRb

⇐⇒ ∀b ∈ B, ∀a ∈ A, aRb

⇐⇒ ∀b ∈ B, b ∈ AR

⇐⇒ B ⊆ AR.

Now we observe that the result is true for singleton subsets. Indeed, we have

{a}R = {t ∈ T : ∀s ∈ {a}, sRt}
= {t ∈ T : aRt}
= {t ∈ T : {t} ⊆ {a}∗}
= {t ∈ T : t ∈ {a}∗}
= {a}∗.

To finish the proof we will use the fact (details omitted) that the proof from Problem 2 can
be generalized to show that for arbitrary collections of sets {Xi}i∈I we have

∩i∈IX∗i = (∪i∈IXi)
∗ .



Finally, for all subsets A ⊆ S we have

A∗ = (∪a∈A{a})∗

= ∩a∈A{a}∗

= ∩a∈A{a}R

= (∪a∈A{a})R

= AR.

To see that the relation R is unique, suppose there exists another relation R′ ⊆ S × T with
the same properties. Then for all t ∈ T we have {t}R = {t}∗ = {t}R′

, and hence for all
(s, t) ∈ S × T we have

sRt⇐⇒ s ∈ {t}R ⇐⇒ s ∈ {t}∗ ⇐⇒ s ∈ {t}R′ ⇐⇒ sR′t.

�

[Remark: The theory of Galois connections between posets is a special case of the theory of adjoint
functors between categories. If C and D are categories, then a pair of functors F : C � D : G is
called an adjunction if there is a family of bijections HomC(F (X), Y ) ≈ HomD(X,G(Y )) that is
“natural” in X and Y . Recall that a poset is just a category in which |Hom(X,Y )| ∈ {0, 1} for
all X and Y , and we write “X ≤ Y ” to mean that |Hom(X,Y )| = 1. Thus if C and D are posets
then the condition HomC(F (X), Y ) ≈ HomD(X,G(Y )) becomes F (X) ≤ Y ⇐⇒ X ≤ G(Y ).
The results we found about Galois connections preserving lattice structure can be generalized by
saying: G preserves limits and F preserves colimits.]

The slogan is “Adjoint functors
arise everywhere”.

Saunders Mac Lane


