Math 761 Fall 2015
Homework 1 Drew Armstrong

On this homework you will further explore the idea of Galois connections. We will begin
by defining a notion of Galois connection for general posets. Let (P, <) and (Q, <) be posets.
A pair of maps * : P 2 () : * is called a Galois connection if it satisfies the following property:

’forallpEPandquwehavepgq*<:>q§p*

Problem 1. Equivalent Definition. Prove that a pair of maps x : P &= @ : % is a Galois

connection (as defined above) if and only if the following two statements hold:
e For all p € P and ¢ € QQ we have

*%k

p<p” and ¢<gq
e For all p1,p2 € P and q1, g2 € Q we have
pr<pr=py<p] and q <qp= ¢ <4q.

[Hint: Since the statements come in dual pairs, you only have to prove half of them.]

Proof. Since the definition of Galois connection is symmetric with respect to P and @, we
never have to say which poset a given element comes from.

First, assume that for all elements = and y we have x < y* <= y < x*. Substituting
y = x* tells us that z < 2 <= 2* < z*. Since z* < z* is always true (by definition of
partial order), we conclude that x < x** for all elements . Now consider any elements x1, xo
such that 1 < x3. From the previous remark we know that x5 < z3*, and then by transitivity
of partial order we have x; < 23" = (z3)*. Finally, our original assumption (with z = x; and
y = %) implies that =} < 7.

Conversely, assume that for all elements x we have x < x** and for all elements x1, 2 we
have 1 < 29 = 25 < z]. Now let = and y be any elements, and suppose that x < y*.
Applying * to both sides gives y** < x*. Then since y < y**, the transitivity of partial order
implies that y < z*. The implication y < z* = o < y* follows by switching the roles of z
and y. O

Recall that a lattice is a poset (P, <) in which every pair of elements z,y € P has a
(necessarily unique) join z V y and meet x A y. By induction, any finite subset A C P also
has a join \/ A € P and meet \ A € P.

Problem 2. Lattice Structure. Let x : P = @ : x be a Galois connection. If, in addition,
P and @) happen to be lattices, prove that for all p1,ps € P and ¢1,q2 € QQ we have

o pi Vs < (p1Ap2)* and ¢i V5 < (q1 A g2)”
e pi Aps=(p1Vp2)*and ¢ Ags = (q1V q2)"

Proof. Again, due to symmetry we won’t worry which poset a given element comes from. We
will freely use the result of Problem 1.

First note that for all elements x1,xo we have z1 A o < x1 and x1 A z9 < x9 by definition.
Applying * to both inequalities gives z] < (x1 A z2)* and x4 < (x1 A z2)*; in other words,



(x1 A x2)* is an upper bound of z7 and x3. By the universal property of join (i.e., the join is
the “least upper bound”), we conclude that

x1 Vs < (x1 Axa)*.

Similarly, we have x1 < 1V z9 and x9 < x1 V 29 by definition. Applying * to both sides gives
(x1Vx2)* <z and (21 V 22)* < x3; in other words, (x; V x2)* is a lower bound of z] and x3.
By the universal property of meets (i.e., the meet is the “greatest lower bound”), we conclude
that
(x1Vx2)" <z Axj.

Finally, note that we have z] A 25 < 2] and z] A 25 < x5 by definition. By the definition
of Galois connection this implies that z; < (z7 A 23)* and zo < (27 A 25)*; in other words,
(x Ax%)* is an upper bound of z; and x2. By the universal property of join this implies that
x1 Vxy < (2 Axd)*. Applying the definition of Galois connection once more gives

] Nxy < (21 Vxe)¥,
and putting together the previous two results gives

] ANy = (x1 V)"

In the next problem you will show that the first inequalities are sometimes strict.

Problem 3. Counterexample. Consider the usual topology on the set of real numbers R.
Let & C 2R be the collection of open sets and let € C 28 be the collection of closed sets. Let
— : 2R 5 9R he the “topological closure” and let o : 28 — 2R be the “topological interior”.
One can check (you don’t need to) that for all O € ¢ and C' € € we have

OCC°«+— 0O CC.

In other words, we have a Galois connection — : & = % : o where 0 is partially ordered by

inclusion (“ <7 = “ C7”) and ¥ is partially ordered by reverse-inclusion (“<” = “ D 7).

Note that & is a lattice with A = N and V = U, whereas % is a lattice with A = U and V = N.
In this case, find specific elements 01,05 € ¢ and C1,Cy € ¥ such that

Ol_ V 02_ < (01 A 02)_ and Clo V C; < (Cl A CQ)O.

Proof. First I'll verify that that this is a Galois connection (even though I didn’t ask you to
do so). Consider O € ¢ and C € ¥, and suppose that O C C°. Since C° C C (property of
interior) transitivity implies O C C. Then applying — gives O~ C C~ (property of closure).
Since C~ = C (definition of closed) we get O~ C C' as desired. The other direction is similar.

Recall that we are regarding € as a poset under reverse-inclusion, so that A = U and V =nN.
Thus we are looking for two open sets O1, O2 such that

(01 002)_ - Ol_ N 02_
I will take the open intervals O; = (0,1) and O2 = (1,2). Then we have O; N Oy = () so that
(01N O02)~ =0~ = 0. On the other hand, the closures are the closed intervals O] = [0, 1]
and Oy = [0,2] so that O] N O5 = {1}, which is strictly bigger than ().
We are also looking for two closed sets C1, (o such that

CoUCS C (CrUCH.

=

I will take the closed intervals C; = [0,1] and Cy = [1,2]. The interiors are the open intervals
C? = (0,1) and C5 = (1,2) so that C; UCS = (0,1) U (1,2). On the other hand we have
C1UCy =10,2] so that (C; U C2)° = (0,2), which is strictly bigger than (0,1) U (1,2). O



[Remark: The result of Problem 5 below will imply that there is an isomorphism between the
subposet €° C & of “o— closed sets” and the subposet &~ C % of “—o closed” sets. You might
wonder (as | did) what kind of sets these are. | found out that the elements of € are called
“regular open sets” and the elements of &~ are called “regular closed sets”. | wasn't able to learn
much about them except for the following facts: (1) &~ and €° are Boolean lattices, (2) convex
sets and their complements are regular.|

Now you will investigate under what conditions the first inequalities in Problem 2 become
equalities.

Problem 4. Closed Elements. Let x : P &= @ : x be a Galois connection between lattices
P and Q. We will say that p € P (resp. ¢ € Q) is *x-closed if p** = p (resp. ¢** = q).
(a) Prove that the meet of any two xx-closed elements is s*-closed.
(b) Prove that the following two conditions are equivalent:
e The join of any two xx-closed elements is **-closed.
e For all #x-closed elements p1,ps € P and q1, g2 € Q we have

pIVpy=(p1Ap2)" and ¢7 Vg = (q1Ag)"

Proof. For part (a) assume that z; and x2 are sx-closed, i.e., that 7" = x; and 25" = z».
By definition of meet we have 1 A zo < 1 and z1 A x5 < 9 and since #* preserves order
[because * reverses order; see Problem 1] this implies that (x; A 22)*™ < a}* = 27 and
(x1 Axe)*™ < 25* = x9. In other words, (1 Ax)** is a lower bound of x; and z2. Since z1 Az
is the greatest lower bound this implies that (z1 A 22)** < 21 A 2. Combining this with the
fact that z1 A zo < (21 A 22)** [see Problem 1] gives

(1'1 A 1‘2)** =21 N\ Z9.

In other words, x1 A x9 is **-closed.

For part (b) first assume that for all z1, 22 we have ] V 23 = (21 A z2)*. We will show
that the join of any two x*-closed elements is *x-closed. So let yi,y2 be any two #x-closed
elements, i.e., let yi* = y; and y5* = y2. Then we have y; = 2] and y2 = x5 where z; = yj
and xy = y3, so that

y1 Vya =] Vs = (xr1 Az,
and this is s*-closed because (z1 A x2)** = (1 A x2)* [see Problem 5(a)].

Conversely, assume the join of any two #x-closed elements is *x*-closed and consider any
sx-closed elements z1,x2. We will show that z7 V 25 = (21 A x2)*. To do this, first note that
by definition of join we have z] < ] V x5 and 5 < 27 V 3. Applying * to both inequalities
gives (] V 23)* < 27" = 21 and (2] V 23)* < 25" = x9. In other words, (2] V 23)* is a lower
bound of x1 and x2. Since x1 A z9 is the greatest lower bound, this implies that

(1) (2] Vas)* < a1 Ao
Since z] and z% are sx*-closed [see Problem 5(a)] we have by assumption that x] V 23 is also
xx-closed. Finally, apply * to both sides of to get

(1 AN xo)* < (2] Vas)™ = a7 Vas.

Combining this with the inequality x] V a5 < (21 A 22)* [see Problem 2] gives the result. [

Finally, let’s put everything together. Basically, if we have a Galois connection between
lattices in which joins of closed elements are closed, then this restricts to an isomorphism on
their sublattices of closed elements. If (P, <) is a poset we’ll use the notation P°P for the same
set of elements with the opposite partial order (and hence with meets and joins switched).



Problem 5. Galois Correspondence. Let x : P = (@) : x be a Galois connection between
lattices P and (). Denote the image of *x : P — @ by P* C @ and denote the image of
x: @ — P by Q* C P. We will think of these as subposets with the induced partial order.

(a) Prove that Q* C P and P* C @) are precisely the subposets of *x-closed elements.
(b) Prove that the restricted maps * : @Q* &= P* : x are an isomorphism of posets:

Q" ~ (P).

(c) If, in addition, the join of any two xx-closed elements is *x-closed, prove that @* C P
and P* C @ are sublattices, and that the isomorphism from (b) is an isomorphism
of lattices.

Proof. For part (a), consider an element z* in the image of *. From Problem 2 we have
x* < (2*)**. On the other hand, applying * to both sides of the inequality x < x** gives
(x*)** = (2*)* < x*. We conclude that (z*)** = 2*, hence z* is xx-closed. Conversely, let y
be sx-closed. Since y = y** = (y*)* we conclude that y is in the image of .

For part (b) we first note that % : Q* = P* : % are inverse functions (and hence bijections).
Indeed, given an element z* in the image of * then we know from part (a) that (z*)** = z*.
Since # reverses order [see Problem 1], we obtain a poset isomorphism Q* ~ (P*)°P.

For part (c) assume that the join of xx-closed elements is *x-closed. By part (a) and Problem
4(a) this implies that @* C P and P* C @ are sublattices. Finally, Problems 2 and 4(b) imply

that the poset isomorphism from part (b) is an isomorphism of lattices. O

[Remark: For the purpose of this problem | defined a sublattice to be a subposet of a lattice closed
under finite meets and joins. If the lattice has a 0 and 1, | don’t require that a sublattice contains
these. For example, if P and () have top elements 1p and 1¢, respectively, then it will follow that
Q" and P* have the same top elements. However, the bottom elements of * and P* will be 1%
and 1?:9, respectively, which might not equal Op and O¢ (see the picture below). An isomorphism
of complete lattices would necessarily preserve 0 and 1. Don't you hate all this terminology? Yeah,
I'm done with lattice theory for a while.]

0q

Op

Epilogue: You might ask whether the definition of Galois connection given above is more
general than the one discussed in class. The answer is: “yes and no”. The answer is “yes” in
the sense that this definition applies to more general posets. However, if P and @ happen to
be Boolean lattices then the answer is “no”. I will define a Boolean lattice as the collection of
subsets of a set U, partially ordered by inclusion. Note that the lattice operations are A =N
and V = U.



Problem 6. Boolean Galois Connections. Let S and T be sets and consider the cor-
responding Boolean lattices P = 2% and Q = 2T. For any relation R C S x T and for any
subsets A C S and B C T we will define the sets A C T and Bf C S as follows:

o AR ={tcT:Vac A aRt}
e B ={s¢€ 5:Vbec B,sRb}

In class we called this an “abstract Galois connection” and we showed that it has many nice
properties. Now let x : P = @ : * be a Galois connection of posets in the sense defined above.
Prove that there exists a unique relation R C S x T such that forall AC S and BCT
we have

A* = AR and B* = BE.

[Hint: Consider the singleton subsets of S and T'. You will need to use the fact that the power
set 2V is a complete lattice, i.e., it is possible to take the intersection and union of arbitrary
collections of subsets.]

Proof. Let S and T be sets and let  : 25 =2 2T : % be a Galois connection of posets. That is,
for all subsets A C T and B C T we have A C B* «< B C A*. In particular, for all elements
se€ SandteT we have

{s} C{t}" <= {t} < {s}".

Define the relation R C S x T by setting “sRt” (i.e., “(s,t) € R”) whenever either of these
equivalent conditions is true.

I claim that for all A C S and B C T we have A* = A and B* = Bf. To see this, first
note that R : 25 = 27 : R is a Galois connection and so it satisfies all of the properties proved
in this homework. Indeed, for all subsets A C S and B C T we have

ACBf e vVaec A aec B"
<= Va € AVb e B,aRb
< Vbe B,Vac A, aRb

< Vbe B,bec AR

< B C AR,
Now we observe that the result is true for singleton subsets. Indeed, we have
{a}? ={t € T :Vs € {a}, sRt}

={teT:aRt}

={teT:{t} C{a}7}
={teT:te{a}"}
= {a}".

To finish the proof we will use the fact (details omitted) that the proof from Problem 2 can
be generalized to show that for arbitrary collections of sets {X;};c; we have

Nier X] = (Uier X;)" .



Finally, for all subsets A C S we have
A" = (Ugea{a})”
= maGA{a}*
= maeA{a}R
= (Uaea{a})"
= AR,
To see that the relation R is unique, suppose there exists another relation R’ C S x T with
the same properties. Then for all t € T we have {t} = {t}* = {t}'¥, and hence for all
(s,t) € S x T we have
sRt <= s € {t}' = s e {t}* < s € {1} — sR't.
O

[Remark: The theory of Galois connections between posets is a special case of the theory of adjoint
functors between categories. If C and D are categories, then a pair of functors F': C =D : G is
called an adjunction if there is a family of bijections Hom¢ (F(X),Y) =~ Homp(X,G(Y)) that is
“natural” in X and Y. Recall that a poset is just a category in which |[Hom(X,Y')| € {0,1} for
all X and Y, and we write "X <Y” to mean that |[Hom(X,Y)| = 1. Thus if C and D are posets
then the condition Hom¢ (F(X),Y) ~ Homp(X,G(Y)) becomes F(X) <Y «<— X < G(Y).
The results we found about Galois connections preserving lattice structure can be generalized by
saying: G preserves limits and F preserves colimits.]

The slogan is “Adjoint functors
arise everywhere”.

Saunders Mac Lane



