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1. Introduction

Recall that GL(n, k) is the collection of linear, invertible transformations on kn, where k is a field.

Definition (rough). A linear algebraic group G is a subgroup of GL(n, k) satisfying

G = {g 2 GL(n, , k) : P1(g) = · · · = PN (g) = 0} ,
where Pi : M(n, k) ! k are polynomials in matrix entries.

Note: We only require a finite number of polynomials to define this group, as the ring is Noetherian and

satisfies the ascending chain condition.

Example 1. Recall that the general linear group is

GL(n, k) = {g 2 M(n, k) : det g 6= 0} .
GL(n, k) is “the king” of linear algebraic groups.

Example 2. We define the special linear group as

SL(n, k) = {g 2 GL(n, k) : det g = 1} .
This is an algebraic group, as determinant is a polynomial in matrix entries. This group reduces the size of
the center in comprison to GL(n). Note that the center of SL(n) is all matrices of the form

0

BBBBB@

↵ 0 · · · 0
0 ↵
...

. . .
...

↵ 0
0 · · · 0 ↵

1

CCCCCA
,

where ↵ is an nth root of unity.

Example 3. We define the orthogonal group as

O(n, k) =
�
g 2 GL(n, k) : gT g = 1

 
.

= {g 2 GL(n, k) : gv · gw = v · w for all v, w 2 kn} .
This is the usual dot product,

v · w =
nX

i=1

viwi.

Since gT g = 1, we know that det g = ±1, or (det g)2 = 1. Hence, O(n) is defined by n2 quadratic equations.
Moreover,

gv · gw = vgT · gw = v · w
if and only if gT g = 1, os our definitions are equivalent. Conceptually, O(n) is the collection of all reflections
and rotations, as well as the composition of those transformations.
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Example 4. Going a step further, we have the special orthogonal group

SO(n, k) =
�
g 2 GL(n) : gT g = 1 and det g = 1

 

= {g 2 O(n) \ SL(n)} .

Note that the intersection of two algebraic (sub)groups is an algebraic group. This particular group, SO(n),
can be thought of as the collection of rotations in kn.

Example 5. The Euclidean group, E(n, k) can be thought of as all maps f : kn ! kn of the form

f(x) = Rx+ v, where R 2 SO(n, k) and v 2 kn.

For n = 2 and k = R, this is the symmetry group of the Euclidean plane. These are the transformations
which preserve lines, distances, and angles and orientation. (Note: If we choose O(n) instead of SO(n), we
would not preserve orientation).

At a glance, it doesn’t appear as if this is a subgroup of GL(n). First of all, it is indeed a group. Composition
of (R, v) with (R0, v0) on any x 2 kn yields

R(R0x+ v0) + v = RR0x+Rv0 + v,

and RR0 2 SO(n) while Rv0 + v 2 kn. Inverses are also clear. For (R, v), define

(R, v)�1 := (R�1,�R�1v).

Finally, the identity is the element (1, 0). This is certainly a group, but is it an algebraic group? We can
write our transformations as

� : (R, v) 7!

0

BB@
R v

0 · · · 0 1

1

CCA 2 GL(n+ 1, k).

Note that

�(R, v) � �(R0, v0) =

0

BB@

Rv0

RR0 +
v

0 · · · 0 1

1

CCA = � ((R, v) � (R0, v0)) ,

so we have a group isomorphism, and we can consider

E(n) =

8
>><

>>:
g 2 GL(n+ 1) : g =

0

BB@
R v

0 · · · 0 1

1

CCA , for R 2 SL(n) and v 2 kn

9
>>=

>>;
.

2. A Curious Postulate

Most of the Euclid’s postulate have been accepted since the publication of The Elements. However, many
mathematicians sought to show that postulate 5, the parallel postulate, follows from the others. Here’s a
rephrased equivalent version of the postulate, attributed to Scottish mathematician John Playfair.

(Almost) Playfair’s Axiom. In a plane, given a line and a point not on it, exactly one line parallel

to the given line can be drawn through the point.

Playfair’s original version claims there is “at most” one line parallel, but the above is closer to the interpre-
tation of Euclid’s intent. To make this a bit more symbolic, let L be the collection of lines in the plane, and
let P be the collection of points. Let I be the operator “is incident to”. Then the postulate/axiom can then
be written as

8p 2 P, 8` 2 L : pI` ) 8p0(¬p0I`), 9!`0 2 L (p0I`0 ^ ¬9q(qI` ^ ¬qI`0)).
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As it turns out, not only is the parallel postulate not provable from Euclid’s other postulates, abandoning it
leads to alternative, non-Euclidean geometry. Let’s take a short look at two such model planes.

Elliptic Geometry. Start with the space S2, the unit sphere satisfying x2 + y2 + z2 = 1 in R3 Construct
the real projective space as a quotient,

RP 2 = S2/ ⇠,

where p ⇠ �p (i.e., we identify antipodal points). We then let P be any points in RP 2, and declare L to be
the collection of great circles. In this case, given a line ` (a great circle) and any point p not in that line ,
any line `0 through p (again, a great circle) will intersect ` in exactly one point.

Thus the claimed nonintersecting line `0 fails to exist.

Hyperbolic Geometry. In this case, we begin with H2, the hyperboloid of two sheets satisfying x2 + y2 �
z2 + 1 = 0. We again construct a quotient,

H = H2/ ⇠,

where p ⇠ �p. This leaves us with the top “bowl”. Now, we let P be the collection of points on this bowl,
and let L be the collection of curves defined by the intersection of this bowl with planes throught the origin.
In this case, it is easy to find an `0 which fails to intersect an original ` through a point p0 not in `.
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However, there is more than enough wiggle room to allow many such elements in L to fit without intersecting
our original `. Thus, the uniqueness of `0 stipulated in the parallel postulate fails to be satisfied.


