
LINEAR ALGEBRAIC GROUPS: LECTURE 11

JOHN SIMANYI

1. Recap

We started this course by looking at Klein geometry, where highly symmetric geometries could be described
via subgroups of GL(n, k). This approach reflects the thinking in the mathematics of the 1800’s.

More recently, we looked at the “modern approach”, where any algebraic set can be viewed intrinsically
through its commutative algebra of regular functions.

Finally, we progress to schemes, and in particular a�ne schemes, ideas developed largely through the work
of Grothendieck.

Now, we want to look at Klein geometry with algebraic groups. After considering how much material we
could cover in Milne’s books, we will choose, as a goal, to look at “The Big Theorem”.

2. Borel Subgroups and Bruhat Cells

As a warm-up, suppose G is a linear algebraic group over an algebraically closed field k (Note: For general
fields, the statements that follow become more complicated).

Definition. A Borel subgroup B ✓ G is a connected, solvable subgroup that’s maximal (not properly
contained in any other connected, solvable subgroup).

Here, connected is defined using the Zariski topology on G, a topology defined on any algebraic set (or any
a�ne variety) by declaring the sets picked out by some polynomial equations to be closed.

Example. Consider the plane in C2 defined as

S1 =
�
(z1, z2) 2 C2 : z2 = 0

 
.

This is closed in the Zarisky topology. Moreover, S2 ✓ S1 defined by

S2 =
�
(z1, z2) 2 C2 : z2(z

7
1 � 1) = 0

 

is a closed in the Zarisky topology, and represents the seventh roots of unity in the z1 plane.

Also, a subgroup H ✓ G is solvable if there exist normal subgroups

{e} = H0 C H1 C · · · C Hn = H

such that each quotient Hi/Hi�1 is abelian.

(Key) Example. If G = GL(n) then the subgroup H of upper triangular matrices is a Borel subgroup.
This subgroup preserves the complete flags Fn, which we defined previously as

Fn := V0 ✓ V1 ✓ · · · ✓ Vn = kn,

where each Vi is a vector subspace of kn of dimension i. This is fundamental to the Klein approach, where
we associated geometry to algebra by considering groups that map particular types of figures to figures of
the same type (such as complete flags).
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Now, our new definition generalizes Borel subgroups to any linear algebraic group G. Moreover, our Big
Theorem about Borel subgroups will only apply when G is nice, in a particular way: It should be reductive.
Suppose our field k has characteristic zero, which means that

1 + 1 + · · ·+ 1| {z }
n�times

6= 0

for all n 2 N. C has characteristic zero, while both Fq and Fq have characteristic p (where q = pn), even
though Fq is algebraically closed.

Definition. A group G is reductive if it is connected, and any finite representation of G is a direct sum
of irreducible representations.

Even though we aren’t here to talk about representation theory, a representation of a group G is a homo-
morphism ⇢ : G ! GL(N) , where N need not equal n, of a�ne algebraic groups in the category A↵Algk.
We say that ⇢ = ⇢0 � ⇢00 if, possibly after a change of basis on kN ,

⇢(g) =

✓
⇢0(g) 0
0 ⇢00(g)

◆
.

A nonzero representation ⇢ is irreducible if for any vector space V ✓ kN ,

⇢(g) : V ! V

only if V = {0}, i.e. no nontrivial subspace smaller than kN is fixed by ⇢(g).

Examples. These linear algebraic groups are reductive:

GL(n,C), Sl(n,C), O(n,C), SO(n,C), Sp(n,C),
where Sp(n,C) is the collection of symplectic transformations, or symplectomorphisms, on Cn. These are
some of the “classical” groups.

Theorem (Big Theorem, intial
¯

). Suppose G is a reductive linear algebraic group over an algebraically

closed field k. Then there exists a Borel subgroup B of G, and any two Borel subgroups B and B0
of G

are conjugate (so there exists a g 2 G such that B0 = gBg�1).

We may frequently talk about “the” Borel subgroup of G, as they are all conjugate. A point in the set G/B
(as B need not be normal) is called a complete flag. The set G/B is a disjoint union of Bruhat cells, each
in bijection with ki for some i.

There’s a Bruhat cell for each element in the Weyl group W , a finite group associated to G. Each Bruhat
cell gives a G-invariant relation on complete flags

R ✓ G/B ⇥G/B,

where by G-invariance
(f, f 0) 2 R , (gf, gf 0) 2 R for all (f, f 0) 2 R.

Indeed, we get every G-invariant relation from the Bruhat type, using “or” or “[”. If R,R0 are relations,
then so is R [ R0. So we get a complete picture of the interesting types of figures of the Klein geometry
associated to G, and their G-invariant relations, once we understand this theorem.

Example. Consider GL(n, k), where we can take

B = {upper triangular matrices in GL(n, k)}
to be the Borel subgroup. The Weyl group is then W = Sn, the permutation group on n elements. The
subgroup B preserves the canonical complete flag

V0 ✓ V1 ✓ · · · ✓ Vn = kn,
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where we have ei = (0, 0, . . . , 0, 1, 0, . . . , 0) with a one in the ith coordinate, and V1 = he1i , V2 = he1, e2i etc.
This implies that g 2 B if and only if gei is a linear combination of e1, e2, . . . , ei, matching that B consists
of upper triangular matrices.

But G/B is the collection of all complete flags. What are the other complete flags, and what Bruhat cells
do they live in?

Consider n = 3, so W = S3, which is generated by

s1 =

✓
1 2 3
2 1 3

◆
and s2 =

✓
1 2 3
1 3 2

◆
.

We can write the Weyl group as

✓
1 2 3
1 2 3

◆

✓
1 2 3
2 1 3

◆

✓
1 2 3
2 3 1

◆

✓
1 2 3
3 2 1

◆

✓
1 2 3
1 3 2

◆

✓
1 2 3
3 1 2

◆

s1 s2

s1s2

s1 s2

Notice that s1s2s1 = s2s1s2. Our favorite flag is

V1 = he1i , V2 = he1, e2i , V3 = he1, e2, e3i = k3.

Given any � 2 S3, we get a new flag

V 0
1 = h�e1i , V2 = h�e1,�e2i , V3 = h�e1,�e2,�e3i = k3.

Since |S3| = 6, there are six complete flags, one in each Bruhat cell! But what do they look like? In k3, we
can picture it as

A complete flag in k3

he1ihe2i

he3i



LINEAR ALGEBRAIC GROUPS: LECTURE 11 4

However, drawing in 3 dimensions is mildly annoying, so let’s do it in a projective sense. We can draw our
1- and 2-dimensional subspaces as points and lines instead:

he1i he2i

he3i

he1, e2i

he1, e3i he2, e3i

Here, the dots represent the one dimensional subpaces (points in kP 2) generated by the various ei, while

the lines are projective lines generated by pairs ei and ej with j 6= i. Notice that the permutation

✓
1 2 3
1 2 3

◆

gives us the complete flag with
p1 = he1i , `1 = he1, e2i .

Similarly, the permutation

✓
1 2 3
2 1 3

◆
gives us the complete flag with

p2 = he2i , `2 = he1, e2i ,
which is a di↵erent point on the same line. Flags of this type - di↵erent points on the same line - form a
Bruhat cell of dimension one, as we can choose any point on the line. Here’s a comparison between the Weyl
group S3 and the associated complete flags/Bruhat cells:

✓
1 2 3
1 2 3

◆

✓
1 2 3
2 1 3

◆

✓
1 2 3
2 3 1

◆

✓
1 2 3
3 2 1

◆

✓
1 2 3
1 3 2

◆

✓
1 2 3
3 1 2

◆

s1 s2

s1s2

s1 s2

s1 s2

s1s2

s1 s2
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