
LINEAR ALGEBRAIC GROUPS: LECTURE 12

JOHN SIMANYI

1. Recap from Lecture 11

Given our “favorite” complete flag in kn,

F = V1 ⊂ V2 ⊂ · · · ⊂ Vn = kn,

we can choose a (standard) basis {ei}ni=1 such that

Vi = 〈e1, e2, . . . , ei〉

for all i. The Weyl group of permutations, Sn, then generate the rest of the complete flags. Each σ ∈ Sn

generates a unique flag generated by

V ′
i = 〈σe1, σe2, . . . , σei〉 .

The Big Theorem says that each new flag lies in a unique Bruhat cell in the (complete) flag variety: the set
of complete flags, which is isomorphic to GL(n, k)/B, where B is the Borel subgroup that fixes our favorite
flag.

2. Which Bruhat Cell?

In order to identify the unique Bruhat cell for each flag, we need to find a convenient way to represent our
flags. Let’s start in k3, with our favorite flag being represented as a matrix, 1 0 0

0 1 0
0 0 1

 ← e1
← e2
← e3.

Notice that V1 is represented as (1 0 0) which means the span of e1, while V2 is represented as the first two
rows, which means the span of both e1 and e2. Finally, k3 is generated by all three rows, which in this case
is e1, e2 and e3. In the language of projective geometry let’s declare V1 to be p, a point in kP 2, and V2 to
be `, a line in kP 2.

Of course, any matrix of the form  λ1 0 0
0 λ2 0
0 0 λ3

 ← v1
← v2
← v3,

where λi ∈ k\{0} would describe the same subspaces (and therefore, complete flag), but we are really only
concerned with the flag - not its generators.
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Using incidence relations and matrices, we want to fill in our hexagonal representation of the Weyl group:

(
1 2 3
1 2 3

)
(

1 2 3
2 1 3

)

(
1 2 3
2 3 1

)
(

1 2 3
3 2 1

)

(
1 2 3
1 3 2

)

(
1 2 3
3 1 2

)

s1 s2

s1s2

s1 s2

s1 s2

s1s2

s1 s2

in a way that describes both the unique Bruhat cells, and the associated types of complete flags.

At each vertex of the hexagon we will call the one-dimensional subspace p′ and the two-dimensional subspace
`′. They give a flag p′ ⊂ `. We get this from the element of S3 indicated at this vertex of the hexagaon.
Each flag has its own relation to our favorite flag p ∈ `. Let us examine some of these.

For the top vertex, it should be clear that we have p′ = p, and `′ = `. What about the upper left vertex,
created by s1(transposing 1 and 2) acting on our original flag This flag satisfies `′ = ` and p′ ⊂ `, but
no more, where by no more we mean it does not satisfy the relations of the top vertex. We will use this
convention to write all the incidence relations, so lower vertices do not satisfy some (or all) of the incidence
relations of higher vertices.

What do these relations really describe? Not just our representative flag, rather the collection of all flags
that satisfy `′ = ` and p′ ⊂ `, but p′ 6= p. In terms of generators, we can satisfy p′ 6= p by having a generator
for V ′

1 = p′ which is independent of that for V1 = p, say

p′ = 〈(1 1 1)〉 .
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However, this wouldn’t work, as we also require that p′ ⊂ `, so there can be no e3 component in a generator
of p′. We can also normalize relative to the e2 component, and say that any subspace of the form

p′ = 〈(B 1 0)〉

will satisfy p′ 6= p, but p′ ⊂ `. This does work, as any such vector is in `, and is linearly independent of
(1 0 0).

To build V ′
2 = `′, we then need to choose a vector that makes `′ = `, and there is a natural choice - the

vector (1 0 0). Finally, any third vector will complete k3, so can simply choose (0 0 1). In matrix form, this
gives us

 B 1 0
1 0 0
0 0 1

 ← v1
← v2
← v3.

Notice that this has one degree of freedom, in the sense that B is a wildcard that can be any element in k.

Continuing, if we look at the lower left vertex we have (pictorially) p′ ⊂ ` but `′ 6= `. As in our previous
example, we have know that our p′ can be generated by something of the form (B 1 0). However, to satisfy
`′ 6= `, we must choose a generator with some e3 component, so after normalizing we can consider the
generator (B 0 1). In order to assure that the three generators are all linearly independent, we can choose
(1 0 0) as our final generator, so the matrix in the lower left is

 B 1 0
B 0 1
1 0 0

 ← v1
← v2
← v3.

Here, we have two wildcards, which can be any element in k. This places such a flag in a Bruhat cell of the
form k2.

Finally, lets look at the lowest vertex of our hexagon. In this case, we have p′ 6⊂ ` and p 6⊂ `′. To satisfy
p′ 6⊂ `, we can choose as our first generator anything of the form (B B 1), so it will always have an e3
component. To satisfy p 6⊂ `′, we can choose something of the form (B 1 0), so it always contains an e2
component. Again, adding a vector of the form (1 0 0) will then generate all of k3. This means we have a
matrix  B B 1

B 1 0
1 0 0

 ← v1
← v2
← v3.

Such a matrix (and flag) will live in a Bruhat cell of the form k3, as shown by the three wildcards. In a
similar manner, we can construct the associated incidence relations and matrices for the final two vertices.
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In a massive batch of correlations, we have

(
1 2 3
1 2 3

)

(
1 2 3
2 1 3

)

(
1 2 3
2 3 1

)

(
1 2 3
3 2 1

)

(
1 2 3
1 3 2

)

(
1 2 3
3 1 2

)

s1 s2

s1s2

s1 s2

p′ = p
`′ = `

p′ ⊂ `
`′ = `

p′ ⊂ `
p 6⊂ `′

p′ 6⊂ `
p 6⊂ `′

p′ = p
p ⊂ `′

p′ 6⊂ `
p ⊂ `′

 1 0 0
0 1 0
0 0 1



∼

k0 B 1 0
1 0 0
0 0 1

 ∼ k1

 B 1 0
B 0 1
1 0 0

 ∼ k2
k3

∼ B B 1
B 1 0
1 0 0



k1 ∼

 1 0 0
0 B 1
0 1 0



k2 ∼

 B B 1
1 0 0
0 1 0



3. Reading the Results

Through the use of wildcards (B), we can see that the upper vertex represents a single point, 1 = k0, while
the next highest are a pair of k1. Continuing down the entire hexagon, we get that

Gl(3)/B ∼= 1 + k + k + k2 + k2 + k3.
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Over a finite field k = Fq, the number of complete flags in k3 is

|Gl(3)/B| = 1 + q + q + q2 + q2 + q3,

which is [ 3 ]q!. Naturally, in n-dimensions, we have |GL(n)| = [n ]q!, a sum over the n! Bruhat cells (the
cardinality of the permutation group) of Gl(n)/B, where a cell of dimension i contributes a qi to the sum.

Our hexagon is a 2-dimensional polytope. In the next lecture, we will look at S4 as the Weyl group, and we
will require working in three dimensions.
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