
LINEAR ALGEBRAIC GROUPS: LECTURE 13

JOHN SIMANYI

1. Recap from Lecture 12

In the last lecture, we looked at the group GL(3) and its Weyl group S3. We constructed a hexagon that
represented the Bruhat cells, showing the correspondence between incidence relations and elements in the
Weyl group: B
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We can use this as a model to proceed to arbitrary GL(n), and will begin with GL(4).

2. Permutahedrons in Higher Dimensions

If {e1, e2, . . . , en} form a basis for kn, we have our “favorite” complete flag

F = {0} ✓ he1i ✓ he1, e2i ✓ · · · ✓ he1, e2, . . . , eni = kn.

For GL(n, l) = GL(n), where the Weyl group is W = Sn, for any � 2 Sn we get a new flag

F� = {0} ✓ h�(e1)i ✓ h�(e1),�(e2)i ✓ · · · ✓ h�(e1),�(e2), . . . ,�(en)i = kn.

Each � 2 Sn determines a Bruhat cell C�, which is a subset of the flag variety GL(n)/B. C� contains F�,
but also other flags having the same relation to F as F�. Writing a flag F 0 as

F 0 = {0} ✓ hv1i ✓ hv1, v2i ✓ · · · ✓ hv1, v2, . . . , vni = kn,

where {vi} is a basis for kn, we get a matrix
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whose ith row is associated to the components of vi. We can then use row operations to make as many entries
zero as possible without changing the flag F 0. All the matrices corresponding to some F 0 2 C� will then
look like
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with nonzero entries only in particular relations, which we showed as stars.

Now, Sn has a presentation with elementary transpositions as generators (for 1  i  n� 1):

si =
1 2 · · · i i+ 1 · · · n

1 2 · · · i+ 1 i · · · n

and relations:

s2i = 1; sisi+1s1 = si+1sisi+1, sisj = sjsi if |i� j| > 1.

Any permutation � 2 Sn has a length `(�), which si the minimum number of si’s needed to write � as a
product of si’s.

Theorem. C�
⇠= k`(�) as sets.

Proof. (Idea) The flag F�si is obtained by changing the i-dimensional space in the flag F�. More generally,
any flag in C�si can be obtained by changing the i-dimensional vectore space in some flag in C�, giving one
extra degree of freedom, so a flag in C� will be determined by `(�) elements of k (the A’s in the chart). ⇤
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In fact, GL(n)/B is a disjoint union of the Bruhat cells, so

Corollary. For any prime power q,

[n]q! =
X

�2Sn

q`(�).

Proof. A while ago we showed that if k = Fq, then

|GL(n)/B| = [n]q!

However, we now know that

GL(n)/B =
G

�2Sn

C�,

so

[n]q! = |GL(n)/B| =
X
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|C�| =
X

�2Sn

q`(�).

⇤

The elements of Sn are the vertices of a polytope called a permutahedron, which for n = 3 is our hexagon.
You get it by taking the n� 1 simplex (triangle, tetrahedron etc.) and “omnitruncating” it. For n = 3,
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Omnitruncating the corners then gives us a hexagon:
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or more artistically,
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For n = 4, we begin with axes, and build a tetrahedron, where the vertices represent point-type flags in
kP 3 :
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We can think of the vertices represents as P (4, 1) - the possible arrangements of 4 objects taken one at a
time - corresponding to a one dimensional subspace from our 4 basis vectors. When we first truncate, we
then have vertices that represent flags of the point-line type in kP 3 :
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Notice that the vertices also can be thought of as P (4, 2), the permutation of 4 objects taken two at a time.
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When we do the final truncation, we arrive at complete flags, which are point-line-plane type in kP 3 :
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As written, the vertices are now P (4, 3). Finally, we can again make it more “artistic”, which is to say
regular. This is the permutahedron for GL(4), with all sides of the same length:
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By writing the ordered index of all four basis elements for our flag, it is now clear that each edge is an
elementary transposition. This shows that each F� lies a minimum of `(�) edges to move back to our
favorite flag, represented here as 1234.
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