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1. Bruhat Cells

Considering an arbitrary field k, recall that

kPn := {1-dimensional subspaces of kn}.

Theorem. As sets, there exists an isomorphism (bijection)

kPn ∼= kn + kn−1 + · · ·+ k0.

These pieces (ki) are called Bruhat cells, but this is sometimes called the Schubert decomposition of kPn,
since the closures of the Bruhat cells are called Schubert cells.

Proof. Any 1-dimensional subspace of kn+1 can be written in the form

p = 〈(x1, x2, . . . , xn+1)〉 ,

where (x1, x2, . . . , xn+1) is not the origin. If xn+1 6= 0, we can write any such p as

p =

〈(
x1

xn+1
,

x2

xn+1
, . . . ,

xn+1

xn+1

)〉
= 〈(y1, y2, . . . , , yn, 1)〉 .

There is a clear bijection

kn ∼= {p ∈ kPn : p = 〈(y1, y2, . . . , , yn, 1)〉} .
Of course, there are those points in kPn for which xn+1 is zero, and are of the form

p = 〈(x1, x2, . . . , xn, 0)〉 .

If xn 6= 0, we can again divide all coordinates by its value to rewrite such p as

p = 〈(y1, y2, . . . , , yn−1, 1, 0)〉 .

This collection is in bijection with kn−1. Via induction, we arrive at our result. �

2. Some Examples

Since kP 1 = k1 + k0 is just the affine line plus a single point, we generally write it as

kP 1 = k + {∞},

which is referred to as “the one point compactification”. Using our coordinate approach, we can write

k ∼=
{
p ∈ kP 1 : p = 〈(x1, 1)〉

}
,

and

{∞} ∼=
{
p ∈ kP 1 : p = 〈(x1, 0)〉

}
.

This infinity is precisely the lines of infinite slope in k2.
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Example 1. If k = R, then

RP 1 ∼= R + {∞}.

This one point compactification has the topology of the circle:

R{∞}

⇐⇒ 1−1

∞

0

R ∪∞

Example 2. If k = C, then CP 1 ∼= C + {∞} ∼= S2, again as a topological space. This can be considered as
the Riemann sphere (a simply connected compact Riemann surface), as well as a complex variety.

SphereGP.png
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Example 3. Returning to k = R, we have that

RP 2 ∼= R2 + R + {∞}
∼= R2 + RP 1

∼= R2 + S1

∼= S2/ ∼,
again as a topological space. This is almost the disk D2. However, RP 2 cannot be embedded in R3 without
intersection, just like the Klein bottle. Remember that in our original description, we considered points in
RP 2 via antipodal identification, so we could look at it as the upper half-sphere (which is essentially a disk),
with the added requirement that we identify antipodal points at the equator. As a Bruhat decomposition,
we have

RR2{∞}

3. Projective Geometry in Finite Fields

Any finite field has q elements, where q = pn for some prime p. Moreover, all fields with q elements are
isomorphic, so we write Fq for “the” field with q elements. Note that

(1) Fp
∼= Z/pZ for a prime p;

(2) For Fpm , m > 1, we take Fp and in a sense “throw in” the roots of some irreducible polynomial with
coefficients in Fp.

Question: what is the cardinality of FqP
n? Well, we can use our Bruhat decomposition to find

|kPn| =
∣∣Fn

q

∣∣ +
∣∣Fn−1

q

∣∣ + · · ·+
∣∣F0

q

∣∣
= qn + qn−1 + · · ·+ 1

=
qn+1 − 1

q − 1
.

We call this value, denoted [n + 1]q as the q-integer.

Example 4. We call F2P
2 the Fano plane. By our rule,∣∣F2P

2
∣∣ = [3]2 = 22 + 2 + 1 = 7.

If we view F3
2 as 〈e1, e2, e3〉, similar to our natural basis in R3, we can picture the seven points as all possible

sums of our basis elements:

〈e1〉

〈e1 + e2〉

〈e2〉

〈e3〉

〈e2 + e3〉〈e1 + e3〉

〈e1 + e2 + e3〉

0
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If we actually draw them in a plane, we can then consider all possible lines (2-dimensional subspaces) that
can be created:

〈e1〉

〈e1 + e2〉

〈e2〉

〈e3〉

〈e2 + e3〉

〈e1 + e3〉

〈e1 + e2 + e3〉

Note that any two lines intersect in precisely one point, while any two points lie on precisely one line.

Theorem. In any projective plane kP 2 :

(1) Any two distinct points determine a unique line.
(2) Any two distinct lines determine a unique point.

Proof. (1) Given any distinct 1-dimensional subspaces p, p′ ∈ k3, the vector space sum

p + p′ = {v + v′ : v ∈ p, v′ ∈ p′}
is a 2-dimensional subspace, so it determines a (projective) line. By linear algebra, this line is unique.

(2) Given any distinct 2-dimensional subspaces `, `′ ∈ k3, we claim ` ∩ `′ is a 1-dimensional subspace, and
therefore a (projective) point. Notice that as vector subspaces,

dim(` + `′) = dim(k3) = dim ` + dim `′ − dim(` ∩ `′)
⇒ 3 = 2 + 2 − 1.

This (projective) point is again unique by the usual linear algebra. �

Next time we’ll try to axiomatize the concept of projective plane. We’ll use the two properties we just
proved, but that won’t quite be enough.
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