
LINEAR ALGEBRAIC GROUPS: LECTURE 5

JOHN SIMANYI

1. Projective Geometry from a Kleinian Perspective

According to Klein, a linear algebraic group “gives” us a geometry. Let’s first consider G = GL(n). In
general, different sets of figures in projective geometry correspond to different subgroups of GL(n).

Definition. Let the Grassmannian Gr(n, j), for 0 ≤ j ≤ n, be the set of all j-dimensional subspaces of
kn.

As examples, we have that

Gr(n, 1) =
{

points of kPn−1} ,
Gr(n, 2) =

{
lines of kPn−1} ,

Gr(n, 3) =
{

planes of kPn−1} ,
Gr(n, j) =

{
(j − 1)-planes of kPn−1} ,

Gr(n, n− 1) =
{

hyperplanes of kPn−1} .
Now, GL(n) acts on each Grassmannian, since it acts on kn mapping subspaces to subspaces of the same
dimension. If L ∈ GL(n, j) and g ∈ GL(n), then

gL = {gv : v ∈ L} .

The Grassmannians are all homogeneous GL(n)-spaces, which is to say GL(n) acts transitively. Any L ∈
Gr(n, j) has a basis {vi}ji=1 , and any other L′ ∈ Gr(n, j) has a basis {v′i}

j
i=1 . Basic linear algebra tells us

we can find a linear operator g ∈ GL(n) such that gvi = v′i for all i, so there exists a g such that

gL = L′.

By our “easy” theorem in the last lecture, a Grassmannian is in bijection with a quotient space

Gr(n, j) ∼= GL(n)/Pn,j

for linear algebraic subgroup Pn,j , where Pn,j is the subgroup that fixes a chosen L ∈ Gr(n, j). Subgroups
of this form - Pn,j - are “maximal parabolic” subgroups of GL(n). Indeed, any linear algebraic group will
have some maximal parabolic subgroups that fix the “nicest” types of figures in its associated geometry.

2. Maximal Parabolic Subgroups

To study these Pn,j choose a nice L ∈ kPn−1. We can choose

L = {(x1, x2, . . . , xj , 0, 0, . . . , 0) ∈ kn} ,
and define

Pn,j = {L ∈ GL(n) : gL = L} .
We begin with a few basic examples. First, we work in k3.
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Example 1. We can consider

P3,1 = {g ∈ GL(3) : g fixes a point in the projective plane.}

We will use the convention that a star (A) is a wildcard, which can take any value in k. This means our

particular L can be written as
(

A 0 0
)T

, and by testing the idea we get that the subgroup consists of
matrices of the form  A A A

0 A A
0 A A

 A
0
0

 =

 A
0
0

 .

Hence,

P3,1 = {A ∈ GL(3) : a21, a31 = 0} .

Similarly, we could choose a nice line in kPn−1 as things of the form
(

A A 0
)T

. Then, P3,2 would be
things of the form  A A A

A A A
0 0 A

 A
A
0

 =

 A
A
0

 .

Thus,

P3,2 = {A ∈ GL(3) : a31, a32 = 0} .

The cases in k3 aren’t very illuminating, aside from showing that P3,1
∼= P3,2 as a group. However, they are

not conjugate, which is to say there is no g ∈ GL(3) such that

gP3,1g
−1 = P3,2.

Let’s briefly look at a slightly larger case.

Example 2. Now we will work in k4. Through the process shown above, we have
A A A A
0 A A A
0 A A A
0 A A A

 ∈ P4,1,


A A A A
A A A A
0 0 A A
0 0 A A

 ∈ P4,2,

and finally 
A A A A
A A A A
A A A A
0 0 0 A

 ∈ P4,3.

Notice that in each case, we replace the lower left corner by a zero matrix with n − j rows and j columns.
This leads to the general result.

Theorem. For a field k,

Pn,j =

{(
X Y
0 Z

)
: X ∈ GL(j), Z ∈ GL(n− j)

}
.

This clearly means that Pn,j is a subgroup of GL(n).
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3. Consequences

If k = R, any linear algebraic group is a manifold, so we can speak of its dimension. If H is a linear algebraic
subgroup of G, then G/H is also, a manifold, and

dim(G/H) = dimG− dimH.

However, for an arbitrary field k, a linear algebraic group need not be a manifold, but is instead called an
(affine) algebraic variety. If H ⊆ G is also a linear algebraic group, then G/H is an algebraic variety as well
- but not affine. Like the case for R, however, we can find the dimension as

dim(G/H) = dimG− dimH.

From this, we can show that

Theorem. The dimension of a Grassmannian is given by

dim (Gr(n, j)) = j(n− j).

Proof. Recall that elements of Pn,j are matrices in GLn which have an n− j by j zero matrix in the lower
left corner, so

dimPn,j = n2 − (n− j)j.

Utilizing our isomorphism,

dim (Gr(n, j)) = dim (GL(n)/Pn,j)

= dimGL(n)− dimPn,j

= n2 −
(
n2 − (n− j)j

)
= (n− j)j.

�

When we look at dimensions of Grassmannians, there’s something akin to Pascal’s triangle lurking about.
If we construct something of the form

dim(GR(0, 0))

dim(GR(1, 0)) dim(GR(1, 1))

dim(GR(2, 0)) dim(GR(2, 1)) dim(GR(2, 2))

dim(GR(3, 0)) dim(GR(3, 1)) dim(GR(3, 2)) dim(GR(3, 3))

this numerically looks like
0

0 0

0 1 0

0 2 2 0

0 3 4 3 0

0 4 6 6 4 0

0 5 8 9 8 5 0

which is a rotated version of the multiplication table!
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However, a Pascal’s triangle also shows up. If k = Fq, where q = pn for some prime p, we get what is known
as a q-deformed Pascal’s triangle. Recall the decomposition of projective space into Bruhat cells:

kPn ∼= kn + kn−1 + · · ·+ k0.

If k = Fq, then

|kPn| = |kn|+
∣∣kn−1∣∣+ · · ·+

∣∣k0∣∣
= qn + qn−1 + · · ·+ 1

=
qn+1 − 1

q − 1

= [n + 1]q ,

the q-integer we defined previously. But we already know that kPn−1 = Gr(n, 1). Thus |Gr(n, 1)| = [n]q.
How does this fact generalize?

Definition. The q-factorial [n]q! is given by

[n]q! = [n]q · [n− 1]q · · · · · [1]q ,

and the q-binomial coefficient is given by(
n
j

)
q

=
[n]q!

[j]q! · [n− j]q!
.

We will finally state without proof (until the next lecture),

Theorem. If k = Fq, then

dim (Gr(n, j)) =

(
n
j

)
q

.

Note the interesting analogy:

(
n
j

)
counts the number of j-element subsets of a set of size n, while

(
n
j

)
q

counts the number of j-dimensional subspaces in Fn
q .

In some mysterious sense, a vector space over the “field with one element” (so q = 1) is just a finite set!
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